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Abstract

We use profile decomposition to characterize 2-soliton solutions of the

KdV equation as global minimizers to a constrained variational problem

involving three of the polynomial conservation laws for the KdV equation.

1 Introduction

The variational properties of multi-soliton solutions of the Kortweg-de Vries
(KdV) equation have played a central role in the study of this equation since
shortly after the discovery of its remarkable properties in the 1960s. An early
milestone was the paper [12] of Lax, in which it is pointed out that multi-
soliton profiles are critical points of constrained variational problems in which
the constraint functionals and the objective functional are conserved under the
flow defined by the KdV equation. This suggested that it might be possible to
establish stability properties of multi-soliton solutions by using the conserved
quantities as Lyapunov-type functionals.

Benjamin [4] (see also Bona [5]) took a first step in this direction by showing
that solitary-wave profiles are local minimizers in H1(R) for the conserved func-
tional E3, subject to the constraint that E2 be held constant (see Section 2 for
the definition of Ej), and deducing the orbital stability of solitary-wave solutions
as a consequence. Later, the work of Cazenave and Lions (see for example, [7],
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and the expository treatment in [1]) established that solitary-wave profiles are
actually global minimizers of this variational problem in a strong sense: every
minimizing sequence for the variational problem has a subsequence which, after
appropriate translations, converges in H1(R) to a solitary-wave profile. Orbital
stability of solitary waves is an immediate consequence.

Maddocks and Sachs [18] generalized the theory of Benjamin and Bona to
obtain a stability result for multi-soliton solutions of KdV. A key step in their
proof was to show that the profiles of N -soliton solutions are local minimizers
in HN (R) of the conserved functional EN+2, when the functionals E2, E3, . . . ,
EN+1 are held constant. Their proof, like that of Benjamin and Bona for single
solitons, did not yield information about global minimizers of the variational
problem.

In this paper, we consider the special case N = 2 of the variational problem
considered in [18]: that is, the problem of minimizing E4 when E2 and E3 are
held constant. In our main result, Theorem 2.6 below, we show that indeed
2-soliton solutions represent the global minimizers for this variational problem.

An easy consequence of Theorem 2.6 is a stability result for 2-soliton solu-
tions in H2(R), stated below as Corollary 2.7. Of course, this is only a special
case of the stability result of [18], which was asserted for N -solitons for general
N , not just for N = 2. Moreover, in recent years a number of papers have
appeared on the topic of stability of multi-solitons which have improved on the
result of [18]. In particular, Killip and Visan [11] have proved a stability re-
sult for N -soliton solutions of KdV which is in some sense optimal: it asserts
stability in H−1, or more generally in any space Hs with s ≥ −1. Instead of
the variational characterization of multi-solitons used here or in [18], they use
a different variational characterization, which is motivated by the inverse scat-
tering theory for KdV, yet which is well-adapted to potentials in low-regularity
Sobolev spaces where the classical inverse scattering theory does not apply. We
also note the recent work of Le Coz and Wang [15], who by building on and
elucidating the work of [18] obtain a stability result for N -soliton solutions of
the modified KdV equation. Their methods should be transferrable to other
integrable equations as well; and in particular it would be worth using them to
revisit the stability theory for KdV multisolitons.

We feel that the result and proof of Theorem 2.6 are interesting in their
own right, apart from the consequences for stability theory. The result settles,
at least in the case N = 2, the question of whether multisolitons are actually
global minimizers of a natural variational problem for KdV, expressed in terms
of polynomial conservation laws which can be viewed as action variables in a
formulation of KdV as an infinite-dimensional Hamiltonian system. It can thus
be viewed as a step towards obtaining an analogue for KdV on the real line of the
elegant theory produced for the periodic KdV equation by Lax [13] and Novikov
[21]. The proof has the advantage of simplicity: it shows that the result is a
straightforward consequence of the profile decomposition, a general phenomenon
unconnected with the KdV equation or its structure, once one shows that 2-
soliton profiles are minimizers for the constrained variational problem when
consideration is restricted to the set of multi-soliton profiles. In other words,
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the fact that 2-soliton profiles are global minimizers inH2 can be shown to follow
from the profile decomposition, together with the fact that they are minimizers
within the set of all multi-soliton profiles.

An important caveat, however, is that the argument can only proceed be-
cause of the uniqueness result for 2-solitons stated as Theorem 2.2 below; and
such uniqueness results can be very difficult to prove in other settings. In fact,
one of the main reasons we have restricted ourselves to 2-solitons in the present
paper is that an analogue of Theorem 2.2 is not yet available for general N -
solitons (see [2] for a discussion of what remains to be shown).

The plan of the remainder of the paper is as follows. In Section 2 we review
some basic properties of N -soliton solutions and polynomial conservation laws
for the KdV equation, state our main result Theorem 2.6, and sketch its proof.
In Section 3, we review the profile decomposition, following [19]. In Section 4,
we analyze a finite-dimensional minimization problem which arises from restrict-
ing the admissible functions in (2.6) and (2.7) to N -soliton profiles. Section 5
contains the proof of our main result, Theorem 2.6, and concludes with a proof
of Corollary 2.7.

Notation.
If E is a measurable subset of R and 1 ≤ p < ∞, we define Lp(E) to

be the space of Lebesgue measurable real-valued functions u on E such that

‖u‖Lp(E) =
(∫
E |u|p dx

)1/p
is finite. In the case when E = R, we sometimes

denote Lp(R) by simply Lp, and denote the norm of u in L2(R) by ‖u‖L2.
When E is an open set in R, for l ∈ N, we define the L2-based Sobolev

space H l = H l(E) to be the closure of the space C∞(E) of all infinitely smooth
real-valued functions on E with respect to the norm

‖u‖Hl(E) =

(
l∑

i=0

∫

E

(
diu

dxi

)2

dx

)1/2

.

Note that H0(E) = L2(E). In the case when E = R, we sometimes denote
H l(R) by simply H l, and denote the norm of u in H l(R) by ‖u‖Hl .

For x ∈ R and r > 0 we denote by B(x, r) the open ball in R centered at x
with radius r, or in other words the interval (x− r, x+ r). Also, for any subset
E of R, we denote by χE the characteristic function of E, so that χE(x) = 1
for x ∈ E and χE(x) = 0 for x /∈ E.

2 Statement of main result

We begin by reviewing the definition and some basic properties of N -soliton
solutions of the Korteweg-de Vries (KdV) equation, and the associated sequence
of polynomial conservation laws. For more details and further references, the
reader is referred to, for example, [8] and [9]; the early papers [12, 13, 14] of
Lax are also very readable.
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Suppose N ∈ N, 0 < C1 < · · · < CN and (γ1, . . . , γN ) ∈ R
N . An N -soliton

profile function is a function of the form

ψC1,...,CN ;γ1,...,γN (x) = 3(D′/D)′

where D is defined as the N ×N determinant of Wronskian form,

D = D(y1, . . . , yN ) =

∣∣∣∣∣∣∣∣

y1 . . . yN
y′1 . . . y′N
. . . . . . . . .

y
(N−1)
1 . . . y

(N−1)
N

∣∣∣∣∣∣∣∣
,

with
yj(x) = e

√
Cj(x−γj) + (−1)j−1e−

√
Cj(x−γj), j = 1, . . . , N.

From N -soliton profile functions, we can construct N -soliton solutions of the
KdV equation,

ut + uux + uxxx = 0, (2.1)

simply by defining

u(x, t) = ψC1,...,CN ;γ1(t),...,γN (t)(x)

where for j = 1, . . . , N ,
γj(t) = aj + Cjt,

and (a1, . . . , aN ) ∈ R
N is arbitrary.

In particular, a single-soliton profile is obtained by taking N = 1, in which
case we have, for C > 0 and γ ∈ R,

ψC,γ(x) = 3(D′/D)′

where D = e
√
C(x−γ) + e−

√
C(x−γ). In other words,

ψC,γ(x) =
3C

cosh2(
√
C(x− γ))

.

Then a single-soliton solution of the KdV equation is obtained by taking

u(x, t) = ψC,γ(t)(x)

where γ(t) = a+ Ct and a ∈ R is arbitrary.
If the constants γ1, . . . , γN are widely separated, then the profile function

ψC1,...,CN ;γ1,...,γN closely resembles a sum of single-soliton profiles
∑N
i=1 ψCi,γi .

A particular instance of this well-known fact that we will use below is the
following:

Lemma 2.1. Suppose 0 < C1 < C2; γ1, γ2 ∈ R; and {x1n} and {x1n} are
sequences such that

lim
n→∞

|x1n − x2n| = ∞.

Then

lim
n→∞

∥∥ψC1,γ1+x1
n
+ ψC2,γ2+x2

n
− ψC1,C2,γ1+x1

n,γ2+x
2
n

∥∥
H2(R)

= 0.
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Proof. This follows immediately from Lemma 3.6 of [3].

The variational problem we are concerned with here has, as objective and
constraint functionals, polynomial conservation laws for the KdV equation.
These are functionals of the form

Ej(u) =

∫

R

P

(
u, ux, uxx, . . . ,

∂j−2u

∂xj−2

)
dx

where j ≥ 2 and P is a polynomial in its arguments. They are conservation
laws in the sense that, if u(x, t) is a solution of (2.1), then (at least formally),

d

dt
[Ej(u(x, t))] = 0

for all t ∈ R. As shown for example in [14], the KdV equation has an infinite
family of such conserved functionals, the first three of which are given by:

E2(u) =

∫

R

1

2
u2 dx,

E3(u) =

∫

R

(
1

2
u2x −

1

6
u3
)
dx,

E4(u) =

∫

R

(
1

2
u2xx −

5

6
uu2x +

5

32
u4
)
dx.

Sobolev embedding theorems imply that for each N ≥ 0, EN+2 defines
a continuous functional on the Sobolev space HN = HN (R) of real-valued
functions whose derivatives up to order N are in L2(R). For u ∈ HN , we
denote by ∇Ek(u) the Fréchet derivative of Ek at u, which coincides with the
Gateaux derivative of Ek and is therefore defined as a linear functional on HN

by

∇Ek(u)[v] = lim
ǫ→0

Ek(u + ǫv)− E(u)

ǫ
,

and identified with a function ∇Ek(u)(x) in the usual way, so that ∇Ek(u)[v] =∫
R
∇Ek(u)(x) · v(x) dx for v ∈ HN . In particular, the Fréchet derivatives of the

first few functionals are given by

∇E2(u) = u,

∇E3(u) = −uxx −
1

2
u,

∇E4(u) = uxxxx +
5

3
uxx +

5

6
(ux)

2 +
5

8
u3.

For fixed 0 < C1 < · · · < CN , define

S = S(C1, . . . , CN ) =
{
ψC1,...,CN ;γ1,...,γN (x) : (γ1, . . . , γN ) ∈ R

N
}
. (2.2)
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It is well-known (for a proof, see for example Theorem 3.8 of [2]) that there
exist constants λ2, . . .λN+1 such that each ψ ∈ S satisfies the ordinary differ-
ential equation

∇EN+2(ψ) =

N+1∑

k=2

λk∇Ek(ψ). (2.3)

Thus N -soliton profiles are (non-isolated) critical points for constrained varia-
tional problems involving the functionals Ej . The family of ordinary differential
equations (2.3) is collectively known as the stationary KdV hierarchy. Due to
work of Novikov, Its/Matveev, and Gelfand/Dickey in the 1970’s (see [2] for
references), it is known that each equation in the hierarchy has the structure of
a completely integrable Hamiltonian system, and indeed can be explicitly solved
by integration.

In the case N = 2, equation (2.3) takes the form

∇E4(ψ) = λ2∇E2(ψ) + λ3∇E3(ψ), (2.4)

or

ψ′′′′ +
5

3
ψψ′′ +

5

6
(ψ′)2 +

5

8
ψ3 = λ2ψ − λ3(ψ

′′ +
1

2
ψ2).

A fact which is crucial for the proof of our main result below is that there is no
choice of the numbers λ2, λ3 for which (2.4) has any solutions in H2(R) besides
1-soliton and 2-soliton profiles:

Theorem 2.2 ([2]). Suppose ψ ∈ H2 is a solution of (2.4), in the sense of
distributions, for some λ2, λ3 ∈ R. Then ψ is either a 1-soliton or a 2-soliton
profile for the KdV equation.

The proof given in [2] for Theorem 2.2 relies on the fact that, as mentioned
above, (2.4) can be explicitly integrated.

We will also make crucial use of the fact that, for all k ≥ 2, Ek is constant
on S, with its value on S given by

Ek(C1, . . . , CN ) := (−1)k
36

2k − 1

N∑

j=1

C
(2k−1)/2
j . (2.5)

To prove (2.5), one first shows that it is valid in the case of a single-soliton profile,
when N = 1 (cf. equation (3.18) of [18]). For a general N -soliton profile ψ(x) =
ψC1,...,CN ;γ1,...,γN (x), one then proves (2.5) by considering a solution u(x, t) of
(2.1) with u(x, 0) = ψ(x). Since u(x, t) resolves into widely separated single-
soliton profiles as t → ∞, it follows that lim

t→∞
Ek(u(x, t)) = Ek(C1, . . . , CN ).

But since Ek is a conserved functional for KdV, it then follows that Ek(ψ) =
Ek(C1, . . . , CN ) as well.

We now consider the constrained variational problem of minimizing the func-
tional E4 over H2(R), subject to the constraints that E2 and E3 be held con-
stant. This is the same variational problem considered, in the case N = 2, in
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the stability theory for N -solitons presented in [18]. Whereas it was shown in
[18] that 2-soliton profiles are local minimizers of the variational problem, we
will show in Theorem 2.6 that they are global minimizers (and in fact, by the
uniqueness result Theorem 2.2, every global minimizer is a 2-soliton profile).
Moreover, every minimizing sequence for the problem must converge strongly
in H2(R) to the set of minimizers.

We begin by introducing some notation concerning the variational problem.

Proposition 2.3. Suppose (a, b) ∈ R
2. Then there exists a nonzero function g

in H2(R) such that E2(g) = a and E3(g) = b if and only if (a, b) ∈ Σ, where

Σ =
{
(a, b) ∈ R

2 : a > 0 and b ≥ −ma5/3
}
,

and

m =
36

5

(
1

12

)5/3

.

Proof. From Cazenave and Lions’ variational characterization of solitary waves
(see for example Theorem 2.9 and Proposition 2.11 of [1]), we know that for
all a > 0 and all g ∈ H1(R) such that E2(g) = a, we have E3(g) ≥ −ma5/3;
and the minimum value E3(g) = −ma5/3 is attained when (and only when)
g = ψC,γ , where C = (a/12)2/3 and γ ∈ R is arbitrary. It follows that if g is a
nonzero function in H2(R) with E2(g) = a and E3(g) = b, then (a, b) ∈ Σ.

Conversely, suppose (a, b) ∈ Σ. For α > 0, define gα(x) =
√
αψC,γ(αx),

where C and γ are as above. Then E2(gα) = a for every α > 0, E3(gα) =
−ma5/3 when α = 1, and E3(gα) → +∞ as α → ∞. Therefore, since b ≥
−ma5/3, the intermediate value theorem implies the existence of some α ∈ [1,∞)
for which E3(gα) = b. Thus by taking g = gα, we can satisfy g ∈ H2(R),
E2(g) = a, and E3(g) = b.

For (a, b) ∈ Σ, define Λ(a, b) ⊆ R by

Λ(a, b) = {r ∈ R : for some g ∈ H2(R), E2(g) = a, E3(g) = b, and E4(b) = r}.
(2.6)

By the definition of Σ, the set on the right-hand side is nonempty, and we can
therefore define

J(a, b) = inf Λ(a, b). (2.7)

(Notice that we do not exclude here the possibility that J(a, b) = −∞. However,
as shown below at the beginning of Section 5, in fact J(a, b) > −∞ for all
(a, b) ∈ Σ.)

Definition 2.4. Suppose (a, b) ∈ Σ. We say that a function φ ∈ H2(R) is a
minimizer for J(a, b) if E2(φ) = a, E3(φ) = b, and E4(φ) = J(a, b). We say
that a sequence {φn} of functions in H2(R) is a minimizing sequence for J(a, b)
if lim
n→∞

E2(φn) = a, lim
n→∞

E3(φn) = b, and lim
n→∞

E4(φn) = J(a, b).
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From the uniqueness property stated in Theorem 2.2, it follows that if min-
imizers for J(a, b) exist, then they must of necessity be 1-soliton or 2-soliton
profiles:

Proposition 2.5. Suppose a and b are real numbers and u ∈ H2 is a minimizer
for J(a, b). Then u must be either a 1-soliton profile or a 2-soliton profile. In
other words we have u(x) = ψD1,D2;γ1,γ2(x) for some real numbers D1, D2, γ1,
γ2, with 0 ≤ D1 < D2.

Proof. According to Theorem 2 on page 188 of [16], if u is a regular point of the
constraint functionals E3 and E4, meaning that the Fréchet derivatives ∇E3(u)
and ∇E4(u) are linearly independent, then there must exist real numbers λ2
and λ3 such that the equation ∇E4(u) = λ2∇E3(u) + λ3∇E2(u) holds, at least
in the sense of distributions. In this case, by Theorem 2.2, u is either a 1-soliton
or a 2-soliton profile. On the other hand, if u is not a regular point of the
constrained functionals, then u satisfies the equation ∇E3(u) = λ∇E2(u) for
some λ ∈ R, and it is an elementary exercise (see for example Theorem 4.2 of
[2]) to show that the only possible solutions of this equation in H2 are 1-soliton
profiles.

However, the preceding result of course leaves open the question of whether
any 1-soliton or 2-soliton profiles are in fact minimizers for J(a, b). Our main
result determines the set of values of (a, b) within Σ for which minimizers for
J(a, b) exist; and for such values of (a, b) determines the value of J(a, b), de-
scribes all the minimizers for J(a, b), and describes the behavior of minimizing
sequences for J(a, b). If S ⊆ H2(R), we say that a sequence {φn} converges to
S in H2(R) norm if

d(φn, S) = inf
ψ∈S

‖φn − ψ‖H2(R) → 0 as n→ ∞,

or, equivalently, if there exists a sequence {ψn} of elements of S such that

lim
n→∞

‖φn − ψn‖H2(R) = 0.

Theorem 2.6. Suppose (a, b) ∈ Σ; that is, a > 0 and b ≥ −ma5/3, where

m = 36
5

(
1
12

)5/3
.

1. If
b = −ma5/3, (2.8)

then every minimizing sequence for J(a, b) converges to S(C) in H2(R)
norm, where S(C) is as defined in (2.2), with C = (a/12)2/3 = (−5b/36)2/5.
Every element of S(C) is a minimizer for J(a, b), and J(a, b) = E4(C).

2. If
−ma5/3
22/3

> b > −ma5/3, (2.9)
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then every minimizing sequence for J(a, b) converges to S(C1, C2) in H
2(R)

norm, where (C1, C2) is the unique pair of numbers such that 0 < C1 < C2,
E2(C1, C2) = a, and E3(C1, C2) = b. Every element of S(C1, C2) is a
minimizer for J(a, b), and J(a, b) = E4(C1, C2).

3. If

b ≥ −ma
5/3

22/3
, (2.10)

then there do not exist any minimizers for J(a, b) in H2.

We remark that the method used below to analyze the behavior of mini-
mizing sequences under the assumptions (2.8) or (2.9) should also be applicable
in case (2.10) holds, and suggests that in the latter case, minimizing sequences
{φn} should, as n → ∞, come to resemble superpositions of widely separated

single-soliton profiles. Thus, for example, if b = −ma
5/3

22/3
we expect that if {φn}

is a minimizing sequence for J(a, b), then there will exist a number C > 0 and
sequences {γ1n} and {γ2n} with lim

n→∞
|γ1n − γ2n| = ∞ such that

lim
n→∞

‖φn − (ψC,γ1n + ψC,γ2n)‖H2 = 0.

Similarly, if b > −ma
5/3

22/3
, we expect that the functions in a typical minimizing

sequence for J(a, b) would resemble a superposition of three or more single-
soliton profiles, two of which have equal amplitudes and whose distance from
each other increases to infinity as n → ∞. We do not pursue this topic further
here, however.

We also remark that the method of proof of Theorem 2.6 should apply as well
to the variational problems satisfied by N -soliton profiles for general N ∈ N.
One important obstacle we have encountered, however, is that of proving an
analogue of Theorem 2.2: i.e., of showing that for all possible choices of the
numbers λ2, . . . , λN+1, the Euler-Lagrange equation

∇EN+2(ψ) = λ2∇E2(ψ) + · · ·+ λN+1∇EN+1(ψ) (2.11)

has no solutions in HN besides N -soliton profiles. As noted in [2], the explicit
integration of equation (2.11) can be carried out for general N just as it can for
N = 2, whenever the value of (λ2, . . . , λN+1) corresponds to that of anN -soliton
profile; but technical difficulties arise in proving that solutions corresponding to
other values of (λ2, . . . , λN+1) are singular.

An immediate consequence of Theorem 2.6 is a stability result for 2-soliton
solutions of the KdV equation. This recovers (by a different proof) the special
case N = 2 of the general result for N -soliton solutions given by Maddocks and
Sachs in [18].
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Corollary 2.7. Suppose 0 < C1 < C2. Then every minimizing sequence {φn}
for J(E2(C1, C2), E3(C1, C2)) converges strongly to S(C1, C2) in H

2(R). More-
over, S = S(C1, C2) is stable, in the sense that for every ǫ > 0 there exists δ > 0
such that if u0 ∈ H2(R) and d(u0, S) < δ, then d(u(·, t), S) < ǫ for all t > 0.

Remark. It follows from this stability result that there are C1 functions γ1(t)
and γ2(t) defined for t ≥ 0 such that

‖u(·, t)− ψC1,C2;γ1(t),γ2(t)‖H2(R) < ǫ

and |γ′1(t)− C1| < ǫ, |γ′2(t)− C2| < ǫ for all t > 0. See [3].

We conclude this section by sketching the idea of the proof of Theorem 2.6
which is given in the succeeding sections.

Suppose (a, b) ∈ Σ with −ma5/3 ≤ b <
−ma5/3
22/3

, and suppose {φn} is a

minimizing sequence for J(a, b). We can apply the profile decomposition, in the
form of Corollary 3.4, to the sequence {ρn} defined by

ρn = |φn|2 + |φ′n|2 + |φ′′n|2.

It follows that we can decompose φn as

φn =

n∑

i=1

vin + wn,

where the sequence {wn} is vanishing in the sense of Definition 3.1, and for each
i ∈ N the sequence {vin}n∈N concentrates around some sequence {xin}n∈N, in the
sense of Definition 3.2. From the concentration property of {vin}n∈N and the
fact that {φn} is a minimizing sequence, it follows that the sequence {vin}n∈N

can be suitably translated so that it converges, weakly in H2(R) and strongly
in H1(R), to a minimizer gi for the variational problem

E4(gi) = inf
{
E4(φ) : φ ∈ H2(R), E2(φ) = ai, E3(φ) = bi

}

for some real numbers ai, bi. As a critical point of this constrained variational
problem, ψ = gi must satisfy the Euler-Lagrange equation (2.4). From Theorem
2.2 it then follows that for each i we have gi = ψD1i,D2i for some numbers D1i

and D2i with 0 ≤ D1i < D2i.
In parts 1 and 2 of Theorem 2.6, our assumption on (a, b) implies that there

exist numbers C1 and C2 with 0 ≤ C1 < C2 such that E2(ψC1,C2
) = a and

E3(ψC1,C2
) = b. Therefore, by definition of J(a, b), we have that

J(a, b) ≤ E4(ψC1,C2
) = (36/7)

(
C

7/2
1 + C

7/2
2

)
.

From the profile decomposition and the fact that {φn} is a minimizing sequence,
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we can obtain that
∞∑

i=1

E2(gi) = 36
∞∑

i=1

(
D3

1i +D3
2i

)
≤ lim

n→∞
E2(φn) = 36

(
C3

1 + C3
2

)

∞∑

i=1

E3(gi) =
−36

5

∞∑

i=1

(
D5

1i +D5
2i

)
≤ lim

n→∞
E3(φn) =

−36

5

(
C5

1 + C5
2

)

∞∑

i=1

E4(gi) =
36

7

∞∑

i=1

(
D7

1i +D7
2i

)
≤ lim

n→∞
E4(φn) ≤

36

7

(
C7

1 + C7
2

)
.

Permuting the terms of the sequence (D
1/2
11 , D

1/2
21 , D

1/2
21 , D

1/2
22 , D

1/2
31 , D

1/2
32 , . . . )

so that they form a decreasing sequence (x1, x2, x3, . . . ); and defining y1 = C
1/2
2

and y2 = C
1/2
1 , we thus have that

∞∑

i=1

x3i ≤ y31 + y32

∞∑

i=1

x5i ≥ y51 + y52

∞∑

i=1

x7i ≤ y71 + y72 .

We analyze this system of inequalities in Section 4, where we show (cf. Lemma
4.10) that it can only be satisfied if x1 = C2, x2 = C1, and xi = 0 for all i ≥ 3.
This can be interpreted as saying that, among the N -soliton profiles of the KdV
equation, the only ones which could possibly solve the variational problem are
1-soliton profiles (in the case when C1 = 0) and 2-soliton profiles (in the case
when C1 > 0).

This information, combined with the control on the functions {vin} and wn
afforded by the profile decomposition, is enough to allow us to deduce that the
functions in the minimizing sequence {φn} are either of the form

φn(x) = ψC1,C2
(x + xn) + rn(x)

for some sequence {xn} of real numbers, where rn → 0 in H2(R); or of the form

φn(x) = φC1
(x+ x1n) + φC2

(x+ x2n) + rn(x)

for some pair of sequences {x1n} and {x2n} of real numbers with |x1n − x2n| →
∞, where again rn → 0 in H2(R). In either case, this shows that the set of
minimizing functions for the variational problem consists of the set S(C1, C2),
and that {φn} converges to S(C1, C2) in H

2(R) norm.
Part 3 of Theorem 2.6 will follow from a simpler argument: under the given

assumptions on (a, b), no 1-soliton profile or 2-soliton profile ψ can exist sat-
isfying the constraints E2(ψ) = a and E3(ψ) = b. But any minimizer for the
variational problem must satisfy the associated Euler-Lagrange equation (2.4),
and therefore by Theorem 2.2 must be either a 1-soliton profile or a 2-soliton
profile. Hence no minimizers can exist.
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3 Profile decomposition

The idea of the proof of Theorem 2.6 is to use an elaboration of the method of
concentration compactness, known as profile decomposition, which details the
ways in which a sequence of measures of bounded total mass can lose compact-
ness.

The technique of profile decomposition dates back to [10] and in some form
even earlier (see for example [6]). We will use a version which is due to Mariş [19].
Actually, although the result of [19] is valid for arbitrary bounded sequences of
Borel measures on any metric space, for simplicity of notation we here restrict
consideration to bounded sequences of nonnegative functions in L1(R).

Definition 3.1. We say that a sequence {fn} of nonnegative functions in L1(R)
is vanishing if for every r > 0, we have

lim
n→∞

sup
y∈R

∫

B(y,r)

fn = 0.

Definition 3.2. If {fn} is a sequence of nonnegative functions in L1(R) and
{xn} is a sequence of real numbers, we say that {fn} concentrates around {xn}
if for every ǫ > 0, there exists rǫ > 0 such that

∫

R\B(xn,rǫ)

fn < ǫ

for every n ∈ N.

Theorem 3.3 ([19]). Suppose {ρn} is a sequence of nonnegative functions which
is bounded in L1(R). Then either {ρn} is vanishing, or there exists a subse-
quence of {ρn} (which we continue to denote by {ρn}), which satisfies one of
the following two properties: either

(1) there exist k ∈ N and for each i ∈ {1, . . . , k} a number mi > 0 and sequence
of balls {B(xin, r

i
n)}n∈N in R with lim

n→∞
rin = ∞, such that

(a) B(xin, r
i
n) ∩ B(xjn, r

j
n) = ∅ for all n ∈ N and all i, j ∈ {1, . . . , k} with

i 6= j,

(b) for each i ∈ {1, . . . , k}, lim
n→∞

∫

B(xi
n,r

i
n/2)

ρn = mi,

(c) for each i ∈ {1, . . . , k}, lim
n→∞

∫

B(xi
n,r

i
n)\B(xi

n,r
i
n/2)

ρn = 0,

(d) for each i ∈ {1, . . . , k}, the sequence {ρnχB(xi
n,r

i
n)
}n∈N concentrates

around {xin}n∈N,

(e) the sequence {ρnχR\∪k
i=1

B(xi
n,r

i
n)
}n∈N is vanishing;

or

12



(2) for each i ∈ N there is a numbermi > 0 and a sequence of balls {B(xin, r
i
n)}n=i,i+1,i+2,...

in R, with lim
n→∞

rin = ∞, such that

(a) B(xin, r
i
n) ∩ B(xjn, r

j
n) = ∅ for all i, j ∈ N with i 6= j, and all n ∈ N

with n ≥ i and n ≥ j,

(b) for each i ∈ N, lim
n→∞

∫

B(xi
n,r

i
n/2)

ρn = mi,

(c) for each i ∈ N,

∞∑

n=i

∫

B(xi
n,r

i
n)\B(xi

n,r
i
n/2)

ρn ≤ 1

2i
,

(d) for each i ∈ N, the sequence {ρnχB(xi
n,r

i
n)
}n≥i concentrates around

{xin}n≥i,
(e) the sequence {ρnχR\∪n

i=1
B(xi

n,r
i
n)
}n∈N is vanishing, and

(f) if for each N ∈ N and each n ≥ N , we define gNn = ρnχR\∪N
i=1

B(xi
n,r

i
n)
,

and define the increasing function qNn (r) for r > 0 by

qNn (r) = sup
y∈R

∫

B(y,r)

gNn ,

then

lim
N→∞

(
lim
r→∞

(
lim sup
n→∞

qNn (r)

))
= 0. (3.1)

One can view (3.1) as saying that although, for any given value of N , the
sequence {gNn }n∈N is not necessarily vanishing, it does come closer, in some
sense, to being a vanishing sequence as N → ∞.

To shorten our proof of Theorem 2.6, we observe that the two cases in
Theorem 3.3 can be combined into one, if we drop the requirement that mi > 0
for each i:

Corollary 3.4. Suppose {ρn} is a sequence of nonnegative functions which
is bounded in L1(R), and suppose {ρn} is not vanishing. Then there exists a
subsequence of {ρn} (which we continue to denote by {ρn}), a sequence {mi}i∈N

of nonnegative numbers, and for each i ∈ N a sequence of balls {B(xin, r
i
n)}n∈N

in R, with lim
n→∞

rin = ∞, such that

(a) B(xin, r
i
n) ∩B(xjn, r

j
n) = ∅ for all i, j ∈ N with i 6= j, and all n ∈ N,

(b) for each i ∈ N, lim
n→∞

∫

B(xi
n,r

i
n/2)

ρn = mi,

(c) for each i ∈ N,

∞∑

n=i

∫

B(xi
n,r

i
n)\B(xi

n,r
i
n/2)

ρn ≤ 1

2i
,

(d) for each i ∈ N, the sequence {ρnχB(xi
n,r

i
n)
}n∈N concentrates around {xin}n∈N,

13



(e) the sequence {ρnχR\∪n
i=1

B(xi
n,r

i
n)
}n∈N is vanishing, and

(f) if for each N ∈ N and each n ∈ N, we define gNn = ρnχR\∪N
i=1

B(xi
n,r

i
n)
, and

define the increasing function qNn (r) for r > 0 by

qNn (r) = sup
y∈R

∫

B(y,r)

gNn ,

then

lim
N→∞

(
lim
r→∞

(
lim sup
n→∞

qNn (r)

))
= 0.

Proof. To obtain Corollary 3.4 from Theorem 3.3, we observe that if (2) holds
in Theorem 3.3, then the statements in Corollary 3.4 will also hold if we simply
define B(xin, r

i
n) = ∅ when i < n. So we need only consider the case when (1)

holds in Theorem 3.3.
Define En = R\ ∪ki=1 B(xin, r

i
n) for n ∈ N. Since {ρnχEn}n∈N

is vanishing,
then for each fixed j ∈ N,

lim
n→∞

sup
y∈R

∫

B(y,j)

ρnχEn = 0.

Therefore we can define a sequence n1 < n2 < n3 < . . . such that

sup
y∈R

∫

B(y,j)

ρnjχEnj
≤ 1

2j+1

for all j ∈ N. If we now pass to the subsequence {ρnj}j∈N, continuing to denote
this subsequence by {ρn}n∈N, we have that

sup
y∈R

∫

B(y,n)

ρnχEn ≤ 1

2n+1
(3.2)

for all n ∈ N. Also, because of part (1)(c) of Theorem 3.3, by passing to a
further subsequence we can guarantee that

∫

B(xi
n,r

i
n)\B(xi

n,r
i
n/2)

ρn ≤ 1

2n+1
(3.3)

holds for all i ∈ {1, 2, . . . , k} and all n ∈ N as well.
For each i ≥ k + 1, we set mi = 0, and for all n ∈ N we define rin = n if

n ≥ i and rin = 0 if n < i. For each fixed n ∈ N, we define a sequence {xjn}
inductively for all i ≥ k + 1 by choosing xin to be any real number such that
B(xin, r

i
n) is disjoint from ∪i−1

j=1B(xjn, r
j
n). Then we have that lim

n→∞
rin = ∞ for

each i ∈ N, and part (a) of the Corollary holds.
For all i ≥ k + 1 and for all n ∈ N, since B(xin, r

i
n) ⊂ En, it follows from

(3.2) that ∫

B(xi
n,r

i
n)

ρn ≤ 1

2n+1
. (3.4)
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This implies that parts (b) and (c) of the Corollary hold for all i ≥ k + 1. For
1 ≤ i ≤ k we already know that part (b) holds, and part (c) follows from (3.3).

To prove part (d), we fix i such that i ≥ k + 1, and observe that by (3.4),

for every ǫ > 0 we can find N ∈ N such that

∫

R

ρnχB(xi
n,r

i
n)
< ǫ for all n > N .

Also, for each n ∈ {1, . . . , N}, since ρnχB(xi
n,r

i
n)

∈ L1(R), we can find rǫ,n > 0
such that ∫

R\B(xi
n,rǫ,n)

ρnχB(xi
n,r

i
n)
< ǫ.

Then if we set rǫ = max{rǫ,1, . . . , rǫ,N}, we have that
∫

R\B(xi
n,rǫ)

ρnχB(xi
n,r

i
n)
< ǫ

for all n ∈ N. This proves part (d) for all i such that i ≥ k + 1, and we already
know that part (d) holds for 1 ≤ i ≤ k.

Finally, part (e) of the Corollary follows immediately from part (1)(e) of
Theorem 3.3, as does part (f) of the Corollary; since (1)(e) of Theorem 3.3
implies that lim

n→∞
qNn (r) = 0 for every r > 0 and every N ≥ k.

We record the following important feature of vanishing sequences.

Lemma 3.5. Suppose 2 < p ≤ ∞. Then there exists a constant Cp > 0 such
that for all u ∈ H1(R),

‖u‖Lp(R) ≤ Cp

(
sup
y∈R

∫

B(y,1)

|u′|2 + |u|2 dx
) 1

2
− 1

p

‖u‖
2

p

H1(R) (3.5)

Proof. This lemma is standard; a proof can be found, for example, in [19].

Corollary 3.6. Suppose {gn} is a bounded sequence in H1(R). If {|gn|2+|g′n|2}
is vanishing, then lim

n→∞
‖gn‖Lp = 0 for all p > 2.

4 Minimizers among the set of N-solitons

Lemma 4.1. Suppose A,B > 0 and k ∈ N. If the system of equations

k∑

i=1

x3i = A3

k∑

i=1

x5i = B5

(4.1)

has a solution (x1, . . . , xk) with xk ≥ 0 for i = 1, . . . , k; then
(
1

k

)2/15

≤ B

A
≤ 1. (4.2)
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Proof. Suppose the system (4.1) has a solution (x1, . . . , xk) with xi ≥ 0 for
i = 1, . . . , k. Defining pi = x3i /A

3 for each i, we have that 0 ≤ pi ≤ 1, so

p
5/3
i ≤ pi. Therefore

(B/A)5 =

k∑

i=1

p
5/3
i ≤

k∑

i=1

pi = 1,

which implies that B/A ≤ 1. Also, by Hölder’s inequality we have

A3 =

k∑

i=1

x3i ≤
(

k∑

i=1

x5i

)3/5( k∑

i=1

1

)2/5

= B3k2/5,

which implies that (1/k)2/15 ≤ B/A.

Lemma 4.2. Suppose A,B > 0 and consider the systems

y31 + y32 = A3

y51 + y52 = B5
(4.3)

and
2y31 + y32 = A3

2y51 + y52 = B5
(4.4)

for (y1, y2) in the first quadrant U =
{
(y1, y2) ∈ R

2 : y1 ≥ 0, y2 ≥ 0
}
.

1. If B/A = 1, then (4.3) has exactly two solutions in U , given by (0, A) and
(A, 0), and and (4.4) has exactly one solution in U , given by (0, A).

2. If (1/2)2/15 < B/A < 1, then (4.3) has exactly two solutions in U , which
are of the form (α, β) and (β, α),where 0 < α < β; and (4.4) has exactly
one solution in U , which is of the form (γ, δ) where 0 < γ < δ.

3. If B/A = (1/2)2/15, then (4.3) has exactly one solution in U , which is
given by (A/21/3, A/21/3); and (4.4) has exactly two solutions in U : one
given by (A/21/3, 0), and one of the form (γ, δ) where 0 < γ < δ.

4. If (1/3)2/15 < B/A < (1/2)2/15, then (4.3) has no solutions in U , and
(4.4) has exactly two solutions in U , which are of the form (γ1, δ1) and
(γ2, δ2), where 0 < γ1 < δ1 and 0 < δ2 < γ2.

5. If B/A = (1/3)2/15, then (4.3) has no solutions in U , and (4.4) has exactly
one solution in U , which is given by (A/31/3, A/31/3).

Proof. Suppose (y1, y2) solves (4.3) and y1, y2 > 0. Letting θ = y2/y1, we obtain
that y1 = A/(1 + θ3)1/3 and g(θ) = (B/A)15, where

g(t) :=
(1 + t5)3

(1 + t3)5
. (4.5)
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Conversely, for each choice of θ > 0 such that g(θ) = (B/A)15, we have a
solution (y1, y2) of (4.3) given by the positive numbers y1 = A/(1 + θ3)1/3 and
y2 = θy1. Therefore, for a given choice of B/A, the number of solutions (y1, y2)
of (4.3) with y1 > 0 and y2 > 0 is equal to the number of solutions θ > 0 to the
equation g(θ) = (B/A)15.

We have that g(0) = 1, g(1) = 1/4, lim
t→∞

g(t) = 1, and

g′(t) =
15(1 + t5)2(t4 − t2)

(1 + t3)6
,

so g(t) is monotone decreasing for 0 ≤ t ≤ 1 and monotone increasing for
1 ≤ t < ∞. Therefore the equation g(θ) = (B/A)15 has exactly two solutions
when B/A ∈ ((1/2)2/15, 1), and has exactly one solution when B/A = (1/2)2/15.
The assertions of the lemma concerning (4.3) then follow.

On the other hand, when y1 > 0, we have that (y1, y2) solves (4.4) if and
only if y1 = A/(2 + θ3)1/3, y2 = θy1, and h(θ) = (B/A)15, where

h(t) :=
(2 + t5)3

(2 + t3)5
.

We have h(0) = 1/4, h(1) = 1/9 and limt→∞ h(t) = 1, and

h′(t) =
30(2 + t5)2(t4 − t2)

(2 + t3)6
,

so that h(t) is monotone decreasing for 0 ≤ t ≤ 1 and monotone increasing
for 1 ≤ t < ∞. When B/A = (1/3)3/15, the equation h(θ) = (B/A)15 has
exactly one solution, namely θ = 1. When B/A ∈ ((1/3)2/15, (1/2)2/15), the
equation h(θ) = (B/A)15 has exactly two solutions, one of which is greater than
one and one of which is less than one. When B/A = (1/2)2/15 there are again
exactly two solutions, one of which is θ = 0 and the other of which is a value
θ > 1. Finally, when B/A ∈ ((1/2)2/15, 1), there is exactly one solution to
h(θ) = (B/A)15, and it satisfies θ > 1. These statements imply the assertions
of the lemma concerning (4.4).

Definition 4.3. Let

D = {(A,B) ∈ R
2 : A > 0, B > 0, (1/2)2/15 ≤ B/A ≤ 1}.

For each (A,B) ∈ D, we define

m(A,B) = y71 + y72 ,

where (y1, y2) is the unique solution to (4.3) satisfying 0 ≤ y1 ≤ y2 and y2 > 0,
guaranteed by Lemma 4.2.

Lemma 4.4.
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1. For all (A,B) ∈ D, and for every λ > 0, we have

m(λA, λB) = λ7m(A,B). (4.6)

2. The function m(A,B) is continuous on the set D.

Proof. The homogeneity property (4.6) ofm(A,B) is an easy consequence of the
definition ofm(A,B). To see thatm(A,B) is continuous onD, observe first that
for given (A,B) ∈ D, the numbers y1 and y2 given in Definition 4.3 are given
by y2 = A/(θ̃3+1)1/3 and y1 = θ̃y2, where θ̃ = θ̃(A,B) is the unique solution in
[0, 1] of the equation g(θ̃) = (B/A)15, and g is the function defined in (4.5). Since
g is continuous and monotone decreasing on [0, 1], and g([0, 1]) = [1/4, 1], then
the inverse map h : [1/4, 1] → [0, 1] defined by h(g(t)) = t is also continuous.
Therefore θ̃(A,B) = h((B/A)15) is continuous on D, so y2 and hence also y1
depend continuously on (A,B). So m(A,B) = y71 + y72 is continuous on D as
well.

Lemma 4.5. Suppose y1 ≥ y2 ≥ 0 and z1 ≥ z2 ≥ 0, and

z31 + z32 ≤ y31 + y32

z51 + z52 ≥ y51 + y52 .
(4.7)

Then
z71 + z72 ≥ y71 + y72 . (4.8)

Equality holds in (4.8) only if y1 = z1 and y2 = z2.

Proof. We may assume y1 > 0 and z1 > 0, or otherwise there is nothing to prove.
Let A3 = y31 + y32 , B

5 = y51 + y52 , and C
7 = y71 + y72 . By Lemmas 4.1 and 4.2,

we have (1/2)2/15 ≤ B/A ≤ 1. Define θ = y2/y1 ∈ [0, 1] and θ̃ = z2/z1 ∈ [0, 1],
and define the function g as in (4.5). Then from the definitions of A and B we
deduce that g(θ) = (B/A)15 ∈ [1/4, 1]; and from (4.7) we have that

B

(1 + θ̃5)1/5
≤ z1 ≤ A

(1 + θ̃3)1/3
, (4.9)

which implies that g(θ̃) ≥ (B/A)15 = g(θ). Since, as shown in the proof of
Lemma 4.2, g is monotone decreasing on [0, 1], it follows that θ̃ ≤ θ. Now define

k(t) :=
(1 + θ7)5

(1 + θ5)7
.

Then as in the proof of Lemma 4.2, an elementary computation (whose details
we omit) shows that k(t) is, like g(t), strictly decreasing on [0, 1] and strictly
increasing on [1,∞). Therefore k(θ̃) ≥ k(θ) = (C/B)35, and so

C

(1 + θ̃7)1/7
≤ B

(1 + θ̃5)1/5
. (4.10)
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Taken with (4.9), this implies that

C

(1 + θ̃7)1/7
≤ z1, (4.11)

which yields (4.8).
If equality holds in (4.8), then equality also holds in (4.11), so from (4.9) and

(4.10) we have that equality holds in (4.10). Therefore k(θ̃) = k(θ). Since k is
strictly decreasing on [0, 1], this implies that θ̃ = θ, and hence g(θ̃) = g(θ) and
so B̃/Ã = B/A. But from (4.7) we have that Ã ≤ A and B̃ ≥ B, so it follows
that Ã = A and B̃ = B. Hence z1 and z2 satisfy the same equation (4.3) as y1
and y2, so by Lemma 4.2, we must have z1 = y1 and z2 = y2.

Lemma 4.6. Suppose A,B > 0 and (1/3)2/15 < B/A < 1. For x = (x1, x2, x3) ∈
R

3, define
g1(x) = x31 + x32 + x33

g2(x) = x51 + x52 + x53

f(x) = x71 + x72 + x73,

and define
Γ =

{
x ∈ R

3 : g1(x) = A3 and g2(x) = B5
}

Ω =
{
x ∈ R

3 : x1 > 0, x2 > 0, and x3 > 0
}
.

(4.12)

Then Γ ∩ Ω is nonempty, and is a smooth one-dimensional submanifold of R3.
If we assume further that B/A ≥ (1/2)2/15, then Γ∩Ω must consist of three

nonempty connected components Γ1, Γ2, and Γ3. For each i = 1, 2, 3, let Γi
denote the closure of Γi, and ∂Γi the boundary of Γi, in the topology of R

3.
Then the restriction of f to Γi takes its maximum value at a single point in Γi,
and takes its minimum value fmin on ∂Γi. For each (x1, x2, x3) ∈ Γ ∩ Ω, we
have f(x1, x2, x3) > fmin.

Proof. Since (1/3)2/15 < B/A < 1, then by Lemma 4.2, there exists a solution
(y1, y2) = (γ, δ) to (4.4) with 0 < γ < δ. Setting x1 = x2 = γ and x3 = δ
then defines a point Q = (γ, γ, δ) ∈ Γ ∩ Ω, and shows that Γ ∩ Ω is nonempty.
The fact that Γ ∩ Ω is a smooth one-dimensional submanifold of R

3 follows
from the implicit function theorem (see, for example, Theorem 1.38 of [22]) and
the fact that the gradients ∇g1(x) and ∇g2(x) are linearly independent at all
x ∈ Γ ∩ Ω. Indeed, if for some c1, c2 ∈ R, with c1, c2 not both zero, we have
c1∇g1(x) + c2∇g2(x) = 0, then it follows easily that x1 = x2 = x3. But then
g1(x) = A3 and g2(x) = B5 imply that B/A = (1/3)2/15, contradicting our
assumption about B/A.

Now suppose we are at a point x0 = (x10, x20, x30) ∈ Γ ∩ Ω where x20 6=
x30. (Note that the point Q defined above is such a point.) Then from the
implicit function theorem it follows that there exists a neighborhood I of x0
in R such that for all t ∈ I, there are unique numbers x2(t) and x3(t) so that
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(t, x2(t), x3(t)) ∈ Γ∩Ω. Moreover, x2(t) and x3(t) are smooth functions of t ∈ I,
with

dx3
dt

=
t2(x22 − t2)

x23(x
2
3 − x22)

dx2
dt

=
t2(t2 − x23)

x22(x
2
3 − x22)

(4.13)

on I.
In particular, this analysis when applied to the point Q shows that that

there are functions x2(t) and x3(t) defined for t in a neighborhood I of γ such
that (t, x2(t), x3(t)) ∈ Γ ∩Ω for all t ∈ I, and equations (4.13) hold on I. From
(4.13) we have that dx2

dt < 0 at t = γ, so there exists an ǫ > 0 such that
0 < x2(t) < t < x3(t) for all t such that γ < t < γ + ǫ.

Assume now further that B/A ≥ (1/2)2/15. Then by Lemma 4.2, the point
(γ, δ) defined above is the only solution (y1, y2) to (4.4) with y1 > 0 and y2 > 0.
Let S be the set of all t0 > γ such that there exist smooth functions x2(t), x3(t)
defined for all t ∈ (γ, t0) such that (t, x2(t), x3(t)) ∈ Γ ∩ Ω and

0 < x2(t) < t < x3(t)

for all t ∈ (γ, t0). Then S is nonempty and bounded, since ǫ ∈ S and t0 ≤ A
for all t0 ∈ S. Therefore S has a finite supremum, which we denote by tm.
Equations (4.13) imply that dx3

dt ≤ 0 and dx2

dt ≤ 0 for all t ∈ [γ, tm), so x2(t)
and x3(t) have limits as t approaches tm from the left; we denote these limits
by x2(tm) and x3(tm) respectively.

We have that 0 ≤ x2(tm) ≤ tm ≤ x3(tm). It cannot be the case that
0 < x2(tm) < tm < x3(tm), for then an application of the implicit function
theorem would allow us to extend x2(t) and x3(t) to an open interval containing
t = tm, contradicting the maximality of tm. Since x2(t) is nonincreasing on
[γ, tm) and x2(γ) = γ, we have x2(tm) < tm. Also, we cannot have 0 < x2(tm) <
tm = x3(tm), for then setting γ̃ = tm = x3(tm) and δ̃ = x2(tm) would produce
a solution (y1, y2) = (γ̃, δ̃) of (4.4) with 0 < δ̃ < γ̃, which is distinct from
(γ, δ) and therefore contradicts the uniqueness of positive solutions to (4.4).
Finally, if 0 < x2(tm) = tm = x3(tm), we would obtain a point in Γ ∩ Ω where
x1 = x2 = x3, which we have already seen is impossible. We have thus ruled
out all the possibilities in which x2(tm) > 0, so it follows that x2(tm) = 0.

We have shown that Γ ∩ Ω contains the smooth arc

{(t, x2(t), x3(t)) : γ ≤ t ≤ tm}
whose endpoints are Q and P1 = (tm, 0, x3(tm)) ∈ ∂Ω. By symmetry, Γ∩Ω also
contains a smooth arc whose endpoints are Q and P2 = (0, tm, x3(tm)) ∈ ∂Ω.
The interior of the union of these two arcs is a connected component Γ1 of Γ∩Ω.

We now consider the problem of maximizing or minimizing f(x) subject
to the constraint x ∈ Γ1. If the maximum or minimum occurs at an interior
point x = (x1, x2, x3) ∈ Γ1, then x must be a critical point of the constrained
variational problem, in the sense that

∇f(x) = λ1∇g1(x) + λ2∇g2(x)
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for some λ1, λ2 ∈ R. This implies that

7x6i = 3λ1x
2
i + 5λ2x

4
i

for i = 1, 2, 3. Letting zi = x2i , we have for all i, j ∈ {1, 2, 3} that

5λ2
7

(zi − zj) = z2i − z2j .

Therefore either zi = zj or zi+ z+ j = 5λ2/7. It follows that the set {z1, z2, z3}
cannot consist of three distinct numbers: if, for example, z1 6= z3 and z2 6= z3,
then we must have that z1 + z3 = z2 + z3 = 5λ2/7, so z1 = z2. It follows
then from Lemma 4.2 that the only possible critical points of f on Γ ∩ Ω are
Q = (γ, γ, δ), (γ, δ, γ), and (γ, δ, γ). But since δ > γ, and x3 > x2 at all points
on Γ1 except Q, we conclude that Q is the only critical point of f on Γ1.

We have now shown that either f takes its maximum value over Γ1 at Q and
its minimum value at P1 and P2, or f takes its minimum value over Γ1 at Q and
its maximum value at P1 and P2. To decide between these two alternatives, it
suffices to determine whether the restriction of f to Γ1 has a local maximum or
a local minimum at Q. For this purpose, we use the second derivative test for
constrained extrema, as expounded for example in [20].

Consider the Lagrangian L(x) defined by

L(x) = f(x)− λ1(g1(x)− A3)− λ2(g2(x)−B5),

and form the “augmented Hessian”, a 5× 5 matrix H defined by

H =

[
0 B

C D

]
,

where B is the 2× 3 matrix given by

B =

[
−(g1)x1

−(g1)x2
−(g1)x3

−(g2)x1
−(g2)x2

−(g2)x3

]
,

C = BT is the transpose of B, and D is the 3× 3 Hessian of L, given by

Dij = Lxixj for i, j ∈ {1, 2, 3}.

Here and in what follows we use 0 to denote matrices of various sizes (in this
case, a 2× 2 matrix) with all zero entries.

We want to compute the determinant detH of H at x = Q. Calculations
show that at x = Q, we have

B =

[
−3γ2 −3γ2 −3δ2

−5γ4 −5γ4 −5δ4

]

and

D =




−14γ3(γ2 + δ2) 0 0

0 −14γ3(γ2 + δ2) 0
0 0 −14δ3(γ2 + δ2)



 ;
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from which one finds that

det(0−BD−1C) =
−450γδ

196

and
detD = −143(γ2 − δ2)3δ3γ6.

Let I2 be the 2× 2 identity matrix, and I3 the 3× 3 identity matrix. Then the
matrix [

I2 0

−D−1C I3

]

has determinant equal to one, and so we can write

detH = det

[
0 B

C D

] [
I2 0

−D−1C I3

]
= det

[
A−BD−1C B

0 D

]
=

= det(A−BD−1C) detD = 14 · 450γ7δ4(γ2 − δ2)3.

Since γ < δ, we have shown that detH < 0 at x = Q. It is easy to check
that B has full rank at x = Q. Therefore, according to Theorem 36 on p. 58 of
[20], we have that vTDv < 0 for all nonzero column vectors v ∈ R

3 satisfying
Bv = 0. In other words, the Hessian D of L is negative definite in all directions
v which are tangent to both the surfaces {x : g1(x) = A3} and {x : g2(x) = B5}
at Q. From a classical result in the calculus of variations (see for example page
334 of [17]), it follows that f(x) has a local maximum at Q subject to the
restriction x ∈ Γ1.

We have now proved that the restriction of f takes its maximum over Γ1 at
Q = (γ, γ, δ) ∈ Γ1 and its minimum value at the endpoints P1 = (tm, 0, x3(tm))
and P2 = (0, tm, x3(tm)) of Γ1. Let us define fmax = f(Q) and fmin = f(P1) =
f(P2). Since the restriction of f to Γ1 has no critical points in Γ1\Q, we must
have f(x) > fmin for all x ∈ Γ1.

By symmetry, it follows that Γ ∩ Ω also contains a component Γ2 which
includes the point (γ, δ, γ) and whose closure has endpoints (0, x3(tm), tm) and
(tm, x3(tm), 0); and a component Γ3 which includes the point (δ, γ, γ) and whose
closure has endpoints (x3(tm), 0, tm) and (x3(tm), tm, 0). Furthermore, we know
that the maximum value of f on Γ2 is attained at (γ, δ, γ), and is equal to fmax;
the minimum value of f on Γ2 is attained at the boundary points of Γ2, and is
equal to fmin; and f(x) > fmin for all x ∈ Γ2. Similar statements hold for Γ3.

To complete the proof of the Lemma, it remains only to show that Γ ∩ Ω
contains no other components besides Γ1, Γ2, and Γ3. To prove this, assume
Q0 = (x10, x20, x30) ∈ Γ ∩ Ω; we wish to show that Q0 ∈ Γi for some i ∈
{1, 2, 3}. We know x10, x20, and x30 cannot all be equal (for this would imply
B/A = (1/3)2/15); and if any two of x10, x20, x30 are equal, then by Lemma
4.2, Q0 must be one of the points (γ, γ, δ), (γ, δ, γ), or (δ, γ, γ), and therefore
lies in one of the Γi. We may therefore assume without loss of generality that
x10 < x20 < x30. Then the analysis above shows that there exists some ǫ > 0
and a smooth curve x(t) = (t, x2(t), x3(t)) mapping I = (x10 − ǫ, x10 + ǫ) into
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Γ ∩ Ω, such that x(0) = Q0, and satisfying t < x2(t) < x3(t) on I. Moreover,
x(t) satisfies equations (4.13), which imply that dx2

dt < 0 and dx3

dt > 0 on I.
Now let S be the set of all t0 > x10 such that there exist smooth functions

x2(t), x3(t) defined for all t ∈ (x10, t0) such that (t, x2(t), x3(t)) ∈ Γ ∩ Ω and

0 < t < x2(t) < x3(t)

for all t ∈ (x10, t0). Again we define tm = supS and let x2(tm) denote the
limit of x2(t) as t approaches tm from the left. The implicit function theorem
and the maximality of tm imply that we must have x2(tm) = tm. But this
then implies that the point (tm, x2(tm), x3(tm)) = (γ, γ, δ) ∈ Γ1. Therefore
the set S1 = {t ∈ [x01, tm] : (t, x2(t), x3(t)) ∈ Γ1} is non-empty. The uniqueness
assertion in the implicit function theorem tells us that for every t ∈ [x01, tm], the
equations g1(x) = A3 and g2(x) = B5 determine x2 and x3 uniquely as functions
of x1 in some open neighborhood of (t, x2(t), x3(t)). Therefore S1 is open. On
the other hand, S1 is clearly closed, by the continuity of x2(t) and x3(t) and
the fact that Γ1 is a closed subset of R3. So we must have S = [x01, tm], and
therefore Q0 ∈ Γ1.

Remark: In the case (1/3)2/15 < B/A < (1/2)2/15, a similar analysis
shows that Γ ∩ Ω is homeomorphic to a circle, and contains all six of the
points P1(γ1, γ1, δ1), P2(γ1, δ1, γ1), P3(δ1, γ1, δ1), P4(γ2, γ2, δ2), P5(γ2, δ2, γ2),
and P6(δ2, γ2, δ2), where (γ1, δ1) and (γ2, δ2) are as described in part 4 of Lemma
4.2. Moreover, points P1, P2, and P3 are local maxima for the restriction of f
to Γ ∩ Ω; while points P4, P5, and P6 are local minima. However, we will not
need these facts in what follows.

Lemma 4.7. Suppose x1, . . . , xn are numbers such that x1 ≥ x2 ≥ · · · ≥ xn ≥
0, with x1 > 0, and for each m ∈ {1, . . . , n} define

Am =

(
m∑

i=1

x3i

)1/3

Bm =

(
m∑

i=1

x5i

)1/5

.

Then for each m ∈ {2, . . . , n},

Bm−1

Am−1
≥ Bm
Am

, (4.14)

and the inequality is strict if xm > 0.

Proof. The statement is obvious if xm = 0, so we may assume xm > 0. Let

f(x) =
(B5

m − x5)3

(A3
m − x3)5

. Then f(xm) = (Bm−1/Am−1)
15 and f(0) = (Bm/Am)15,
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so it suffices to show that f(xm) > f(0). Now

f ′(x) =
15x2(B5

m −A3
mx

2)(B5
m − x5)2

(A3
m − x3)6

.

So f ′(x) > 0 for 0 ≤ x < x0, where x0 =
√
B5
m/A

3
m. But since xm ≤ xi for all

i ∈ {1, . . . ,m}, we have

A3
mx

2
m =

(
m∑

i=1

x3i

)
x2m ≤

m∑

i=1

x5i = B5
m,

so xm ≤ x0. Therefore f(xn) > f(0), as desired.

Lemma 4.8. Let A,B > 0 be such that (1/2)2/15 ≤ B/A ≤ 1, and let n ∈ N,
with n ≥ 3. Suppose x1, . . . , xn are numbers such that x1 ≥ · · · ≥ xn ≥ 0, with
x3 > 0, and

n∑

i=1

x3i = A3

n∑

i=1

x5i = B5.

(4.15)

Then
n∑

i=1

x7i ≥ m(A,B) + E, (4.16)

where E = E(x1, x2, x3) is defined by

E(x1, x2, x3) := x71 + x72 + x73 −m((x31 + x32 + x33)
1/3, (x51 + x52 + x53)

1/5). (4.17)

In particular,
E(x1, x2, x3) > 0. (4.18)

Proof. Let Ã = (x31 + x32 + x33)
1/3 and B̃ = (x51 + x52 + x53)

1/5. If we define
Γ and Ω as in (4.12) with A replaced by Ã and B replaced by B̃, then since
x1 ≥ x2 ≥ x3 > 0, the point x = (x1, x2, x3) lies in Γ∩Ω. The inequality (4.18)
thus follows from Lemma 4.6.

To prove (4.16), we use induction on n. When n = 3, the result is trivial.
Suppose n ≥ 4 and assume the statement of the lemma is true for n − 1; we
wish to prove it for n.

Suppose that x1 ≥ · · · ≥ xn ≥ 0, with x3 > 0, and that (4.15) holds.
If xn = 0, then we are done by the inductive hypothesis, so we may assume
xn > 0. Let

An−1 =
(A3 − x3n)

1/3

xn

Bn−1 =
(B5 − x5n)

1/5

xn
,
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and define yi = xi/xn for 1 ≤ i ≤ n− 1. Then y1 ≥ · · · ≥ yn−1, and

n−1∑

i=1

y3i = A3
n−1

n−1∑

i=1

y5i = B5
n−1.

From Lemma 4.7 it follows that Bn−1/An−1 > B/A, and from Lemma 4.1 we
have that Bn−1/An−1 ≤ 1. Hence (1/2)2/15 ≤ Bn−1/An−1 ≤ 1, and we may
therefore apply the inductive hypothesis to the numbers y1 ≥ y2 ≥ · · · ≥ yn−1 ≥
0. There results the inequality

n−1∑

i=1

y7i ≥ m(An−1, Bn−1) + E1, (4.19)

where

E1 = y71 + y72 + y73 −m((y31 + y32 + y33)
1/3, (y51 + y52 + y53)

1/5).

From (4.6), however, it follows that E1 = E/x7n, so multiplying (4.19) by x7n,
we conclude that

n−1∑

i=1

x7i ≥ x7nm(An−1, Bn−1) + E. (4.20)

From Lemma 4.2 we have that there exist w1, w2 with 0 ≤ w1 < w2 such
that

w3
1 + w3

2 = A3
n−1

w5
1 + w5

2 = B5
n−1.

By definition of the function m, we have

w7
1 + w7

2 = m(An−1, Bn−1). (4.21)

Letting z1 = xnw1, z2 = xnw2, and z3 = xn, we see that

z31 + z32 + z33 = A3

z51 + z52 + z53 = B5.

Therefore (z1, z2, z3) is in the closure of the set Γ ∩ Ω defined in Lemma 4.6.
From Lemma 4.2 we see that the boundary of Γ ∩ Ω consists exactly of the six
points (0, α, β), (0, β, α), (α, 0, β), (β, 0, α), (α, β, 0), and (β, α, 0). At each of
these boundary points, the function f defined in Lemma 4.6 takes the same
value α7 + β7, which by definition is equal to m(A,B). Hence, by Lemma 4.6,
we have that

f(z1, z2, z3) ≥ m(A,B).
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Since f(z1, z2, z3) = x7n(1 + w7
1 + w7

2), using (4.21) we deduce that

x7n + x7nm(An−1, Bn−1) ≥ m(A,B).

Therefore, by (4.20),

n∑

i=1

x7i = x7n +
n−1∑

i=1

x7i ≥ x7n + x7nm(An−1, Bn−1) + E ≥ m(A,B) + E,

as was desired.

We are now ready for the main results of this section.

Lemma 4.9. Suppose y1 ≥ y2 ≥ 0 and y1 > 0. Let n ∈ N, and suppose
x1, . . . , xn are numbers such that x1 ≥ · · · ≥ xn ≥ 0, and

n∑

i=1

x3i ≤ y31 + y32

n∑

i=1

x5i ≥ y51 + y52 .

(4.22)

1. If n ≥ 2 and y2 = 0, then x2 = 0 and x1 = y1.

2. If n ≥ 3 and x3 > 0, then

n∑

i=1

x7i ≥ y71 + y72 + E(x1, x2, x3), (4.23)

where E(x1, x2, x3) > 0 is as in (4.17) and (4.18).

Proof. Define A =
(
y31 + y32

)1/3
, B =

(
y51 + y52

)1/5
, An =

(∑n
i=1 x

3
i

)1/3
, and

Bn =
(∑n

i=1 x
5
i

)1/5
. From Lemma 4.1, Lemma 4.7, and (4.22), we have that

1 =
B1

A1
≥ B2

A2
≥ B3

A3
≥ · · · ≥ Bn

An
≥ B

A
≥
(
1

2

)2/15

. (4.24)

To prove part 1 of the Lemma, we simply observe that if y2 = 0 then
B/A = 1, and if x2 > 0 then B1/A1 > B2/A2 by Lemma 4.7. Thus (4.24)
immediately gives a contradiction. So if y2 = 0, we must have x2 = 0 and hence
x1 = y1.

To prove part 2 of the Lemma, we first observe that from (4.24), Lemma
4.2, and the definition of the function m, we obtain that there exist z1 and z2
with 0 ≤ z1 ≤ z2 and z2 > 0 such that

z31 + z32 = A3
n

z51 + z52 = B5
n

(4.25)
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and z71 + z72 = m(An, Bn).
Now if n ≥ 3 and x3 > 0, then from Lemma 4.8 it follows that

n∑

i=1

x7i ≥ m(An, Bn) + E(x1, x2, x3) = z71 + z72 + E(x1, x2, x3). (4.26)

But since
z31 + z32 ≤ A3

z51 + z52 ≥ B5,

it follows from Lemma 4.5 that z71 + z72 ≥ y71 + y72 . This, combined with (4.26),
gives (4.23).

Note that an interesting, and immediate, consequence of Lemma 4.9 is the
following: among the set of all N -soliton profiles for the KdV equation, the ones
which minimize E4 subject to the constraints that E3 and E2 be held constant
are precisely the 1-soliton and 2-soliton profiles.

Lemma 4.10. Suppose y1 ≥ y2 ≥ 0 and y1 > 0. Let {xn}n∈N be a sequence
such that x1 ≥ x2 ≥ x3 ≥ · · · ≥ 0, and

∞∑

i=1

x3i ≤ y31 + y32

∞∑

i=1

x5i ≥ y51 + y52 .

(4.27)

1. If y2 = 0, then x2 = 0 and x1 = y1.

2. If x3 > 0, then
∞∑

i=1

x7i ≥ y71 + y72 + E(x1, x2, x3), (4.28)

where E(x1, x2, x3) > 0 is as in (4.17) and (4.18).

Proof. Define A =
(
y31 + y32

)1/3
, B =

(
y51 + y52

)1/5
, A∞ =

(∑∞
i=1 x

3
i

)1/3
, and

B∞ =
(∑∞

i=1 x
5
i

)1/5
; and for n ∈ N define An =

(∑n
i=1 x

3
i

)1/3
and Bn =

(∑n
i=1 x

5
i

)1/5
. Thus lim

n→∞
An = A and lim

n→∞
Bn = B. From Lemmas 4.1 and 4.7

and our assumptions, we have that

1 ≥ B1

A1
≥ B2

A2
≥ · · · ≥ Bn

An
≥ · · · ≥ B∞

A∞
≥ B

A
≥
(
1

2

)2/15

.

Part 1 of the Lemma is now proved by the same argument as part 1 of
Lemma (4.9).

To prove part 2 of the Lemma, we suppose n ≥ 3 and x3 > 0, and consider
first the case when the first inequality in (4.27) is strict: that is, when

∑∞
i=1 x

3
i <
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y31+y
3
2 . For each i ∈ N and n ∈ N, define αn = Bn/B∞ and xin = xi/αn. Then

limn→∞ αn = 1, and for each n ∈ N we have

n∑

i=1

x5in =

∞∑

i=1

x5i ≥ y51 + y52 .

Also,

lim
n→∞

n∑

i=1

x3in =

∞∑

i=1

x3i < y31 + y32,

so by choosing n sufficiently large we have
∑n

i=1 x
3
in ≤ y31 + y32 . We can thus

apply Lemma 4.9 to x1n ≥ · · · ≥ xnn ≥ 0 for all sufficiently large n ∈ N, and
obtain that

n∑

i=1

x7in ≥ y71 + y72 + E(x1n, x2n, x3n),

or
1

α7
n

n∑

i=1

x7i ≥ y71 + y72 +
1

α7
n

E(x1, x2, x3).

Taking the limit as n→ ∞ then gives the desired result (4.28).
Next, consider the case when

∑∞
i=1 x

3
i > y31 + y32 . Then for sufficiently

large n, (4.22) holds, so by Lemma 4.9 we conclude that (4.23) holds, which
immediately implies (4.28).

It remains then only to consider the case when A∞ = A and B∞ = B.
In this case we argue as follows. For each n ∈ N, since Bn/An ≥ (1/2)2/15,
by Lemma 4.2 we can choose z1n ≥ z2n ≥ 0 such that An = z31n + z32n and
Bn = z51n + z52n; we then have that m(An, Bn) = z71n + z72n. From Lemma 4.9,
we have that

n∑

i=1

x7i ≥ m(An, Bn) + E(x1, x2, x3). (4.29)

But, by Lemma 4.6, we have lim
n→∞

m(An, Bn) = m(A∞, B∞) = m(A,B). Tak-

ing the limit on both sides of (4.29) as n→ ∞ then gives the desired result.

5 Proof of Theorem 2.6

We first prove part 3 of Theorem 2.6, which is an easy consequence of the
results of the preceding sections. Suppose (a, b) ∈ Σ, and suppose that (2.10)
holds. Assume for contradiction that there exists a minimizer u ∈ H2(R) for
J(a, b). Then by Proposition 2.5, there must exist real numbers D1, D2, γ1, γ2
with 0 ≤ D1 < D2 such that u = ψD1,D2;γ1,γ2 . Since E2(ψ) = a and E3(ψ) = b,
it follows from (2.5) that

12
(
D

3/2
1 +D

3/2
2

)
= a

−36

5

(
D

5/2
1 +D

5/2
2

)
= b.
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Hence the equations (4.1) hold with A = (a/12)1/3, B = (−5b/36)1/5, k = 2,

x1 = D
1/2
1 , and x2 = D

1/2
2 . Therefore, by Lemma 4.1, we must have that

B/A ≥ (1/2)2/15. Further, we cannot have that B/A = (1/2)2/15, for by part
3 of Lemma 4.2, this would imply that x1 = x2, contradicting the fact that
D1 < D2. Hence B/A > (1/2)2/15. But this means that

b < −ma
5/3

22/3
,

which contradicts our assumption (2.10). This then completes the proof of part
3 of the Theorem.

Turning to the proof of parts 1 and 2 of Theorem 2.6, we now suppose that
(a, b) ∈ Σ and either (2.8) or (2.9) holds. In particular we must have that b < 0.

Let {φn} be any minimizing sequence for J(a, b), so that lim
n→∞

E2(φn) = a,

lim
n→∞

E3(φn) = b, and lim
n→∞

E4(φn) = J(a, b). (Note that minimizing sequences

always exist. For example, from the definition of J(a, b) it follows that we can
choose {rn} to be any sequence in Λ(a, b) such that rn → J(a, b), and then take
{φn} such that E2(φn) = a, E3(φn) = b, and E4(φn) = rn for each n ∈ N.)

Since {E2(φn)} converges, then {φn} is bounded in L2. Also, since by
Sobolev embedding and interpolation we have

∫

R

(φ′n)
2 dx = 2E3(φn) +

1

3

∫

R

u3

≤ 2E3(φn) + C‖φn‖3H1/6 ≤ 2E3(φn) + C‖φn‖5/2L2 ‖φn‖1/2H1 ,

it follows that
‖φn‖2H1 ≤ C(1 + ‖φn‖1/2H1 ),

which implies that {φn} is bounded in H1. Finally, we have
∫

R

(φ′′n)
2 dx = 2E4(φn) +

∫

R

(
5

3
uu2x −

5

16
u4
)
dx, (5.1)

and since {φn} is bounded in H1, it follows from Sobolev inequalities that
the integral on the right is bounded. Since {E4(φn)} is bounded above and
{
∫
R
(φ′′n)

2 dx} is bounded below, it follows from (5.1) that both these sequences
are in fact bounded. Therefore {φn} is bounded in H2, and J(a, b) > −∞.

Define
ρn := φ2n + (φ′n)

2 + (φ′′n)
2.

Since {φn} is bounded in H2, then {ρn} is bounded in L1, and we can apply
Corollary 3.4 to {ρn}.

We observe that {ρn} is not a vanishing sequence in the sense of Definition
3.1. Indeed, if {ρn} did vanish, then it would follow from Lemma 3.5 that
lim
n→∞

‖φn‖L3 = 0, which in turn implies that

lim inf
n→∞

E3(φn) =
1

2
lim inf
n→∞

∫

R

(φ′n)
2 ≥ 0.
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But on the other hand,
lim
n→∞

E3(φn) = b < 0,

giving a contradiction.
Since {ρn} does not vanish, then from Corollary 3.4 we obtain a sequence of

balls {B(xin, r
i
n)}n∈N for each i ∈ N, satisfying properties (a) to (f).

Define η to be a smooth function on R such that η(x) = 1 for |x| ≤ 1/2 and
η(x) = 0 for |x| ≥ 1; and for R > 0, define ηR(x) = η(x/R). For each i ∈ N and
n ∈ N, define

vin(x) = φn(x)ηrin(x− xin). (5.2)

We then have the decomposition

φn =

n∑

i=1

vin + wn, (5.3)

where for each n ∈ N we define

wn(x) = φn(x)η̃n(x),

with

η̃n(x) = 1−
n∑

i=1

ηrin(x− xin).

For all n ∈ N and i ∈ N, define

Ain = B(xin, r
i
n)\B(xin, r

i
n/2)

Zin = R\B(xin, r
i
n/2)

Wn = R\ ∪ni=1 B(xin, r
i
n).

Then
supp vin ⊆ B(xin, r

i
n)

suppwn ⊆Wn ∪
(
∪ni=1A

i
n

)

suppw′
n ⊆ ∪ni=1A

i
n.

(5.4)

We will need some preliminary results on the behavior of the decomposition
(5.3), which we state in the next few lemmas.

Lemma 5.1. We have

lim
n→∞

n∑

i=1

∫

Ai
n

ρn = 0. (5.5)

Proof. For given ǫ > 0, choose N1 ∈ N so that

∞∑

i=N1

1

2i
<
ǫ

2
. If n ≥ N1 then we

can use part (c) of Corollary 3.4 to write

n∑

i=N1

∫

Ai
n

ρn ≤
n∑

i=N1

∞∑

j=i

∫

Ai
j

ρj ≤
n∑

i=N1

1

2i
<
ǫ

2
.
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But we also have from part (c) of Corollary 3.4 that for each fixed i ∈ N,

lim
n→∞

∫

Ai
n

ρn = 0. Therefore, once N1 has been chosen, we can find N2 ∈ N so

that if n ≥ N2 then

N1−1∑

i=1

∫

Ai
n

ρn <
ǫ

2
. It follows that for n ≥ max(N1, N2) we

have

n∑

i=1

∫

Ai
n

ρn < ǫ, as desired.

Lemma 5.2. Suppose B > 0, and suppose {φn} is any sequence of functions in
H2(R) satisfying ‖φn‖H1 ≤ B for all n ∈ N. Let vin and wn be defined for n ∈ N

and i ∈ N by (5.2) and (5.3). Then there exists a constant C > 0 depending
only on η and B (and in particular, not on k or n) such that for all n ∈ N, and
for m = 2, 3, 4,

∣∣∣∣∣Em(φn)−
n∑

i=1

Em(vin)− Em(wn)

∣∣∣∣∣ ≤ C
n∑

i=1

∫

Ai
n

ρn. (5.6)

Proof. We substitute (5.3) into E2(φn) = 1
2

∫
R
φ2n, and expand, expressing

E2(φn) as a sum of integrals. Since vin and vjn have disjoint supports for i 6= j,
all integrals in this expression whose integrands contain two factors of vin with
distinct values of i will vanish. We thus obtain

E2(φn) =

n∑

i=1

E2(v
i
n) + E2(wn) +

n∑

i=1

∫

R

vinwn.

Since the intersection of the supports of vin and wn is contained in Ain, and
|vin| ≤ |φn| and |wn| ≤ |φn| everywhere on R, we have

∫

R

|vinwn| =
∫

Ai
n

|vinwn| ≤
∫

Ai
n

|φn|2 ≤
∫

Ai
n

ρn. (5.7)

This then establishes (5.6) for m = 2.
Substituting (5.3) into the expression for E3(φn), we obtain the estimate

∣∣∣∣∣E3(φn)−
n∑

i=1

E3(v
i
n)− E3(wn)

∣∣∣∣∣ ≤

n∑

i=1

(∫

R

|vin′||w′
n|+

∫

R

|vin|2|wn|+
∫

R

|vin||wn|2
)
.

Then we write
∫

R

|vin′||w′
n| =

∫

Ai
n

|vin′||w′
n| ≤ C

∫

Ai
n

(
|φn|2 + |φ′n|2

)
≤ C

∫

Ai
n

ρn,

∫

R

|vin|2|wn| ≤ ‖vn‖L∞

∫

Ai
n

|vinwn| ≤ C‖φn‖L∞

∫

Ai
n

ρn ≤ C

∫

Ai
n

ρn,

(5.8)
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and similarly for
∫
R
|vin||wn|2. (Here and in what follows we use C to stand for

various constants which depend only on η and B.) This establishes (5.6) for
m = 3.

Finally, to prove (5.6) for m = 4, we substitute (5.3) into E4(φn) and write
∣∣∣∣∣E4(φn)−

n∑

i=1

E4(v
i
n)− E4(wn)

∣∣∣∣∣ ≤

C

∫

R

n∑

i=1


|vin′′w′′

n|+ |vinvin′w′
n|+ |vin||w′

n|2 + |vin′|2|wn|+
∑

s,t≥1
s+t≤4

|vin|s|wn|t


 .

(5.9)
All the terms on the right side of (5.9) can be estimated like the terms in the
preceding paragraphs. For example, we have
∫

R

|vin|3|wn| ≤ ‖vn‖2L∞

∫

Ai
n

|vinwn| ≤ C‖φn‖2L∞

∫

Ai
n

ρn ≤ C‖φn‖2H1

∫

Ai
n

ρn

∫

R

|vin′|2|wn| ≤ ‖wn‖L∞

∫

Ai
n

|vin′|2 ≤ C‖φn‖L∞

∫

Ai
n

ρn ≤ C‖φn‖H1

∫

Ai
n

ρn.

Clearly, similar estimates hold for the remaining integrals; we omit the details.

Lemma 5.3. In addition to the assumptions of Lemma 5.2, assume that f ∈ H2

with ‖f‖H1 ≤ B. For each n ∈ N and each i ∈ {1, . . . , n}, define

φ̃n = f +

n∑

j=1
j 6=i

vjn + wn.

Then there exists a constant C > 0, depending only on η and B, such that
∣∣∣∣∣∣∣∣
Em(φ̃n)− Em(f)−

n∑

j=1
j 6=i

Em(vjn)− Em(wn)

∣∣∣∣∣∣∣∣
≤ C

n∑

j=1
j 6=i

∫

Aj
n

ρn + C‖f‖Hm−2(Zi
n)
,

(5.10)
for m = 2, 3, and 4.

Proof. Proceeding as in the proof of Lemma 5.2, we write
∣∣∣∣∣∣∣∣
E2(φ̃n)− E2(f)−

n∑

j=1
j 6=i

E2(v
j
n)− E2(wn)

∣∣∣∣∣∣∣∣

≤ C

∫

R

|fwn|+ C

n∑

j=1
j 6=i

(∫

R

|fvjn|+
∫

R

|vjnwn|
)
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The sum

n∑

j=1
j 6=i

∫

R

|vjnwn| is estimated as in (5.7). Also, since the support of wn is

contained in Zin, and the same is true of the support of vjn whenever j 6= i, then

∫

R

|fwn| ≤ ‖f‖L2(Zi
n)
‖wn‖L2 ≤ C‖f‖L2(Zi

n)
‖φn‖L2 ≤ C‖f‖L2(Zi

n)
.

Finally, since the supports of the functions {vjn}j∈N are mutually disjoint, and
for j 6= i are all contained in Zin, there exists C depending only on η and B
(and not on k, n or i) such that

n∑

j=1
j 6=i

∫

R

|fvjn| ≤ C

∫

Zi
n

|fφn| ≤ C‖f‖L2(Zi
n)
.

This proves (5.10) for m = 2.
Similarly, (5.10) is proved for m = 3 by expanding E3(φn) as in Lemma 5.2,

then using estimates such as (5.8), together with the estimates

∫

R

|f ′|




∑

j 6=i
|vjn′|+ |w′

n|



 ≤ C‖f ′‖L2(Zi
n)
‖φn‖H1 ≤ C‖f‖H1(Zi

n)
‖φn‖H1 ,

∫

R

|f |2


∑

j 6=i
|vjn|+ |wn|


 ≤ ‖f‖L∞‖f‖L2(Zi

n)
‖φn‖L2 ≤ C‖f‖L2(Zi

n)
,

and a similar estimate for
∫
R
|f |(∑j 6=i |vjn|2 + |wn|2).

Finally, (5.10) is proved for m = 4 by expanding E4(φn) to obtain an ex-
pression similar to (5.9), but with additional terms on the right-hand side of the
form ∑

j 6=i

∫

R

(
|f ′′||vjn′′|+ |f ||vjn′|2 + |f |2|vjn′|+ |f ||f ′||vjn′|

)
+

+

∫

R

(
|f ′′||w′′

n|+ |f ||w′
n|2 + |f |2|w′

n|+ |f ||f ′||w′
n|
)

+
∑

s,t≥1
s+t≤4

∫

R

|f |s



∑

j 6=i
|vjn|+ |wn|




t

.

These can each be estimated by the terms on the right-hand side of (5.10). For
example, we have

∫

R

|f |3|wn| ≤ ‖f‖L∞‖wn‖L∞

∫

Zi
n

|f |2 ≤ C‖f‖2H1‖wn‖H1‖f‖L2(Zi
n)
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and

∫

R

|f ||f ′||w′
n| ≤ ‖f‖L∞‖w′

n‖L2

(∫

Zi
n

|f ′|2
)1/2

≤ C‖f‖H1‖wn‖H1‖f‖H1(Zi
n)
.

The remaining terms are estimated similarly. We omit the details, which are
straightforward.

Lemma 5.4. Suppose 2 < p ≤ ∞. Then lim
n→∞

‖wn‖Lp(R) = 0.

Proof. For each n ∈ N, we have from (5.4) that wn = wn
(
χWn +

∑n
i=1 χAi

n

)

and w′
n = w′

n

(
χWn +

∑n
i=1 χAi

n

)
; and from the definition of wn we see that

there exists a constant C > 0 such that for every n ∈ N and x ∈ R, w2
n(x) ≤

Cφ2n(x) ≤ Cρn(x), and (w′
n)

2(x) ≤ C
(
φ2n(x) + (φ′n(x))

2
)
≤ Cρn(x). Therefore,

we can write

sup
y∈R

∫

B(y,1)

(
w2
n + (w′

n)
2
)

= sup
y∈R

[∫

B(y,1)

(
w2
n + (w′

n)
2
)
χWn +

n∑

i=1

∫

B(y,1)

(
w2
n + (w′

n)
2
)
χAi

n

]

≤ C sup
y∈R

∫

B(y,1)

ρnχWn + C

n∑

i=1

∫

Ai
n

ρn.

(5.11)
But

lim
n→∞

sup
y∈R

∫

B(y,1)

ρnχWn = 0, (5.12)

by part (e) of Corollary 3.4. Combining Lemma 5.1, (5.11), and (5.12) gives

lim
n→∞

sup
y∈R

∫

B(y,1)

(
w2
n + (w′

n)
2
)
dx = 0.

Since {wn}, like {φn}, is a bounded sequence in H1(R), the proof is then com-
pleted by applying Lemma 3.5.

Lemma 5.5. We have

lim
N→∞

lim sup
n→∞

n∑

i=N

∫

R

|vin|3 = 0 (5.13)

and

lim
N→∞

lim sup
n→∞

n∑

i=N

∫

R

[∣∣∣∣v
i
n

(
vin

′)2
∣∣∣∣+ |vin|4

]
= 0. (5.14)
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Proof. For a fixed value of n ∈ N, the supports of the functions {vin}i=1,...,n are
mutually disjoint. Therefore, if we define

fN,n =
n∑

i=N

vin,

we can write, for all N,n such that N < n,

n∑

i=N

∫

R

∣∣vin
∣∣3 =

∫

R

|fN,n|3 .

Now

∫

R

|fN,n|3 ≤ C‖fN,n‖2H1(R)

(
sup
y∈R

∫

B(y,1)

(
|f ′
N,n|2 + |fN,n|2

)
)1/2

≤ C

(
sup
y∈R

∫

B(y,1)

ρnχR\∪N
i=1

B(xi
n,r

i
n)

)1/2

= C
(
qNn (1)

)1/2
,

(5.15)

where qNn (r) is the function defined in part (f) of Corollary 3.4. (In obtaining
(5.15), we used Lemma 3.5 along with the facts that the support of fN,n lies
outside ∪Ni=1B(xin, r

i
n), and that |fN,n|2 and |f ′

N,n|2 are majorized pointwise

by Cρn, where C depends only on the cutoff function η.) Since qNn (r) is an
increasing function of r, it follows from part (f) of Corollary 3.4 that

lim
N→∞

lim sup
n→∞

qNn (1) = 0. (5.16)

Therefore (5.13) follows from (5.15).
Similarly, we can use Lemma 3.5 to write

n∑

i=N

∫

R

|vin|4 =

∫

R

(fN,n)
4 ≤ C‖fN,n‖2H1(R)

(
sup
y∈R

∫

B(y,1)

(
|f ′
N,n|2 + |fN,n|2

)
)

≤ CqNn (1),
(5.17)

and by Hölder’s inequality, Sobolev embedding, and (5.15), we have

n∑

i=N

∫

R

∣∣∣∣v
i
n

(
vin

′)2
∣∣∣∣ =

∫

R

∣∣fN,n(f ′
N,n)

2
∣∣ ≤

(∫

R

∣∣f ′
N,n

∣∣8/3
)3/4 (∫

R

|fN,n|3
)1/3

≤ C‖fN,n‖8/3H1(R)

(
qNn (1)

)1/6
.

(5.18)
Estimates (5.17) and (5.18) together with (5.16) then imply (5.14).

Fix i ∈ N, and for n ∈ N define θin(x) = vin(x + xin). Since {θin}n∈N is a
bounded sequence in H2(R), then by passing to a subsequence, we may assume
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that it converges weakly in H2(R) to some function gi ∈ H2(R). By a diag-
onalization argument, and replacing {φn}n∈N by an appropriate subsequence,
we may assume that for every i ∈ N, the sequence {θin}n∈N converges weakly
in H2(R) to gi. (In what follows we will often replace sequences by subse-
quences without changing notation.) Further, by again passing to appropriate
subsequences, we may assume that the sequences {E2(θ

i
n)}n∈N and {E3(θ

i
n)}n∈N

converge. Define
ai = lim

n→∞
E2(θ

i
n) = lim

n→∞
E2(v

i
n)

bi = lim
n→∞

E3(θ
i
n) = lim

n→∞
E3(v

i
n).

(5.19)

Lemma 5.6. For each i ∈ N, {θin}n∈N converges strongly to gi in H
1(R).

Proof. First note that by part (d) of Corollary 3.4, for every ǫ > 0 there exists
Rǫ > 0 such that ∫

B(xi
n,r

i
n)\B(xi

n,Rǫ)

ρn < ǫ

for all n ∈ N. By taking Rǫ larger if necessary, we may assume as well that

∫

R\B(0,Rǫ)

(
(g′′i )

2 + (g′i)
2 + g2i

)
< ǫ.

From the definition of θin, it is easy to see that there exists a constant C such
that for all n,

‖θin‖2H2(R\B(0,Rǫ))
≤ C

∫

B(xi
n,r

i
n)\B(xi

n,Rǫ)

ρn,

and therefore

‖θin − gi‖H2(R\B(0,Rǫ)) ≤ ‖θin‖H2(R\B(0,Rǫ)) + ‖gi‖H2(R\B(0,Rǫ)) < 2ǫ.

On the other hand, since the inclusion of H2(B(0, Rǫ)) into H1(B(0, Rǫ)) is
compact, then {θin}n∈N has a subsequence {θink

}k∈N that converges strongly to
gi in H

1(B(0, Rǫ)). Then for all sufficiently large k, ‖θink
− gi‖H1(B(0,Rǫ)) < ǫ,

and therefore ‖θink
− gi‖H1(R) < 3ǫ.

It follows from the preceding that for every ǫ > 0, there exists a subsequence
{θink

}k∈N of {θin}n∈N such that ‖θink
− gi‖H1(R) < ǫ for all k ∈ N. By now

taking a sequence of values of ǫ tending to zero and using a diagonalization
argument, we obtain a subsequence of {θin}n∈N which converges to gi strongly
in H1(R). Since the same argument shows that every subsequence of {θin}n∈N

has a subsubsequence which converges to gi in H
1(R), it follows that {θin}n∈N

itself converges to gi in H
1(R).

Lemma 5.7. For each i ∈ N, we have

lim
n→∞

∫

R

|vin|p =
∫

R

|gi|p (5.20)
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for all p such that 2 ≤ p ≤ ∞, and

lim
n→∞

∫

R

vin

(
vin

′)2
=

∫

R

gi(g
′
i)

2. (5.21)

In particular,
lim
n→∞

E2(v
i
n) = E2(gi) = ai

lim
n→∞

E3(v
i
n) = E3(gi) = bi.

(5.22)

Proof. Equation (5.20) follows from Lemma 5.6 and the fact that, by standard
Sobolev embedding theorems, Lp embeds continuously in H1(R) when 2 ≤ p ≤
∞. For (5.21), we can write
∫

R

vin(v
i
n

′
)2 −

∫

R

gi(g
′
i)

2 =

∫

R

(vin − gi)
(
vin

′)2
+

∫

R

gi(v
i
n

′ − g′i)(v
i
n

′
+ g′i).

Using Hölder’s inequality and Sobolev embedding, we can majorize the integrals
on the right-hand side by

‖vin − gi‖L∞(R)‖vin‖2H1(R) + ‖gi‖L∞(R)‖vin − gi‖H1(R)

(
‖vin‖H1(R) + ‖gi‖H1(R)

)

≤ C‖vin − gi‖H1(R)

(
‖vin‖2H1(R) + ‖gi‖2H1(R)

)
.

Since gi ∈ H1(R), and {vin}n∈N converges to gi in H
1(R), the preceding expres-

sion has limit zero as n→ ∞, proving (5.21). Finally, (5.22) follows immediately
from Lemma 5.6 and (5.20).

Lemma 5.8. For each i ∈ N,

E4(gi) ≤ lim inf
n→∞

E4(θ
i
n) = lim inf

n→∞
E4(v

i
n). (5.23)

Proof. Choose a subsequence {θink
}k∈N of {θin}n∈N such that lim

k→∞
E4(θ

i
nk
) =

lim inf
n→∞

E4(θ
i
n). By the weak compactness of bounded sets in Hilbert space, we

can find a further subsequence, also denoted by {θink
}, which converges weakly

in H2(R) to gi. By the lower semicontinuity of the norm in Hilbert space, we
have that

‖gi‖H2 ≤ lim inf
k→∞

‖θink
‖H2

Since {θink
}k∈N converges strongly in H1(R) to gi, this implies that

‖g′′i ‖L2 ≤ lim inf
k→∞

‖(θink
)′′‖L2 .

On the other hand, by Lemma 5.7, we have that
∫

R

(
−5

6
gig

2
ix +

5

32
g4i

)
= lim

k→∞

∫

R

(
−5

6
θink

(θink
)2x +

5

32
(θink

)4
)
.

Combining the last two statements, we obtain (5.23).
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For each i ∈ N, if gi ≡ 0, then obviously ai = bi = 0. If on the other hand
gi is not identically zero, then by Proposition 2.3, (ai, bi) ∈ Σ, and so J(ai, bi)
is well-defined by (2.7). In that case, we have:

Lemma 5.9. For each i ∈ N, if gi is not identically zero, then gi is a minimizer
for J(ai, bi).

Proof. We prove the lemma by contradiction. If gi is not a minimizer for
J(ai, bi), then there must exist a function h ∈ H2 such that E2(h) = ai,
E3(h) = bi, and E4(h) < E4(gi). Define, for n ∈ N,

hn(x) = h(x− xin)

and

φ̃n = hn +
n∑

j=1
j 6=i

vjn + wn.

To obtain the desired contradiction, we will show that

lim
n→∞

E2(φ̃n) = a

lim
n→∞

E3(φ̃n) = b

lim inf
n→∞

E4(φ̃n) < J(a, b).

To begin with, use the triangle inequality to write

∣∣∣E2(φn)− E2(φ̃n)
∣∣∣ ≤

∣∣∣∣∣∣
E2(φn)−

n∑

j=1

E2(v
j
n)− E2(wn)

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣∣∣
E2(φ̃n)− E2(hn)−

n∑

j=1
j 6=i

E2(v
j
n)− E2(wn)

∣∣∣∣∣∣∣∣
+
∣∣E2(v

i
n)− E2(hn)

∣∣ .

We can use Lemma 5.2 and Lemma 5.3 with f = hn to estimate the first two
terms on the right-hand side of the preceding inequality, and thus obtain that

∣∣∣E2(φn)− E2(φ̃n)
∣∣∣ ≤ |E2(v

i
n)− E2(hn)|+ C

n∑

j=1

∫

Aj
n

ρn + C‖hn‖L2(Zi
n)
.

Since

‖hn‖L2(Zi
n)

=

(∫

R\B(0,rin/2)

h2(x) dx

)1/2

,

and h ∈ L2(R) and lim
n→∞

rin = ∞, it follows that lim
n→∞

‖hn‖L2(Zi
n)

= 0. Finally,

we have that

lim
n→∞

(E2(v
i
n)− E2(hn)) = lim

n→∞
(E2(v

i
n)− E2(h)) = lim

n→∞
(E2(v

i
n)− ai) = 0.
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Combining these results, we obtain that lim
n→∞

(E2(φn)−E2(φ̃n)) = 0, so lim
n→∞

E2(φ̃n) =
a.

Similar arguments apply to E3(φn) − E3(φ̃n) and E4(φn) − E4(φ̃n). From
Lemmas 5.2 and 5.3 we obtain that

|E3(φn)− E3(φ̃n)| ≤ |E3(v
i
n)− E3(hn)|+ C

n∑

j=1

∫

Aj
n

ρn + C‖hn‖H1(Zi
n)

(5.24)

and

E4(φn)− E4(φ̃n) ≥ E4(v
i
n)− E4(hn)− C

n∑

j=1

∫

Aj
n

ρn − C‖hn‖H2(Zi
n)
. (5.25)

The same considerations as in the preceding paragraph show that it follows from
(5.24) that lim

n→∞
E3(φ̃n) = b. Also, from (5.25) and (5.23) we obtain that

lim inf
n→∞

[E4(φn)− E4(φ̃n)] ≥ lim
n→∞

[E4(v
i
n)− E4(hn)] ≥ E4(gi)− E4(h) > 0,

and hence
lim sup
n→∞

E4(φ̃n) < lim
n→∞

E4(φn) = J(a, b).

In particular, it follows that there exists some sufficiently large n for which
E4(φ̃n) < J(a, b). But since E2(φ̃n) = a and E3(φ̃n) = b, this contradicts the
definition of J(a, b).

From Proposition 2.5 and Lemma 5.9, we conclude that for each i ∈ N, there
exist D1i, D2i, γ1i, γ2i ∈ R with 0 ≤ D1i ≤ D2i such that

gi(x) = ψD1i,D2i;γ1i,γ2i(x). (5.26)

Here we follow the conventions that if D1i = 0, then ψD1i,D2i;γ1i,γ2i = ψD2i;γ1i ;
and if D1i = D2i = 0, then ψD1i,D2i ≡ 0. Also, in what follows we will occa-
sionally omit the subscripts γ1i and γ2i, referring to gi simply as ψD1i,D2i .

Lemma 5.10. For the numbers D1i and D2i defined for i ∈ N by (5.26), we
have

12

∞∑

i=1

(
D

3/2
1i +D

3/2
2i

)
≤ a

36

5

∞∑

i=1

(
D

5/2
1i +D

5/2
2i

)
≥ −b

36

7

∞∑

i=1

(
D

7/2
1i +D

7/2
2i

)
≤ J(a, b).

(5.27)
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Proof. For m = 2, 3, 4, if we define ǫmn for n ∈ N by

ǫmn = Em(φn)−
n∑

i=1

Em(vin)− Em(wn),

then we have from Lemmas 5.2 and 5.1 that lim
n→∞

ǫmn = 0.

In case m = 2, we have E2(f) ≥ 0 for all f ∈ L2. Therefore we have, for all
N,n ∈ N such that n > N ,

N∑

i=1

E2(v
i
n) = E2(φn)−

n∑

i=N+1

E2(v
i
n)− E2(wn)− ǫ2n ≤ E2(φn)− ǫ2n.

Holding N fixed and taking the limit on both sides as n → ∞, and recalling
(5.19), we obtain that

N∑

i=1

E2(gi) = 12

N∑

i=1

(
D

3/2
1i +D

3/2
2i

)
≤ a.

Then taking the limit as N → ∞ yields the first inequality in (5.27).
Next, we consider the case m = 3. We have, for all N,n ∈ N such that

n > N ,

N∑

i=1

E3(v
i
n) = E3(φn)−

n∑

i=N+1

E3(v
i
n)− E3(wn)− ǫ3n

= E3(φn)−
n∑

i=N+1

∫

R

(
1

2
(vin

′)2 − 1

6
(vin)

3

)
−
∫

R

(
1

2
(wn

′)2 − 1

6
w3
n

)
− ǫ3n

≤ E3(φn) +
1

6

n∑

i=N+1

∫

R

(vin)
3 +

1

6

∫

R

w3
n − ǫ3n.

(5.28)
Let ǫ > 0 be given. From (5.13) it follows that there exists N ∈ N such that

lim sup
n→∞

n∑

i=N+1

∫

R

∣∣vin
∣∣3 < ǫ.

For this fixed value of N , by taking the limit as n goes to infinity of both sides
of (5.28) and using Lemma 5.4, we obtain that

−36

5

N∑

i=1

(
D

5/2
1i +D

5/2
2i

)
=

N∑

i=1

bi ≤ b+
ǫ

6
,

and hence

36

5

∞∑

i=1

(
D

5/2
1i +D

5/2
2i

)
≥ 36

5

N∑

i=1

(
D

5/2
1i +D

5/2
2i

)
≥ −b− ǫ

6
.
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Since this inequality holds for all ǫ > 0, we have proved the second inequality
in (5.27).

In case m = 4, we have

N∑

i=1

E4(v
i
n) ≤ E4(φn) +

n∑

i=N+1

∫

R

[
5

6

∣∣∣vin(vin
′
)2
∣∣∣+

5

32

∣∣vin
∣∣4
]

+
5

6

∫

R

wn(w
′
n)

2 − 5

32

∫

R

w4
n − ǫ4n,

(5.29)

for all N,n ∈ N such that n > N . Using Lemma 5.4 we see that lim
n→∞

∫

R

w4
n = 0

and

lim
n→∞

∣∣∣∣
∫

R

wn(w
′
n)

2

∣∣∣∣ ≤ lim
n→∞

‖wn‖L∞‖wn‖2H1 = 0.

For given ǫ > 0, by (5.14), we can choose N0 ∈ N such that for all N ≥ N0,

lim sup
n→∞

n∑

i=N+1

∫

R

[
5

6

∣∣∣vin(vin
′
)2
∣∣∣+

5

32

∣∣vin
∣∣4
]
< ǫ.

For each fixed value of N ≥ N0, taking the limit on both sides of (5.29) as n
goes to infinity and using (5.23), we then obtain

36

7

N∑

i=1

(
D

7/2
1i +D

7/2
2i

)
=

N∑

i=1

E4(gi) ≤ J(a, b) + ǫ.

Since this is true for all N ≥ N0, it follows that

36

7

∞∑

i=1

(
D

7/2
1i +D

7/2
2i

)
≤ J(a, b) + ǫ,

and since ǫ > 0 was arbitrary, this proves the final inequality in (5.27).

By Lemma 5.10, only finitely many of the numbers D1i and D2i can be
greater than any fixed positive number. Therefore it is possible to re-order the
numbers in the sequence

(
D

1/2
11 , D

1/2
21 , D

1/2
12 , D

1/2
22 , D

1/2
13 , D

1/2
23 . . .

)
(5.30)

so that they form a non-increasing sequence, whose terms we denote by {xn},
with x1 ≥ x2 ≥ x3 ≥ . . . .

Proof of part 1 of Theorem 2.6. Suppose that (2.8) holds. We let
C = (a/12)2/3 = (−5b/36)2/5 > 0. For every γ ∈ R, we have

E2(ψC,γ) = 12C3/2 = a,

E3(ψC,γ) = −(36/5)C5/2 = b.
(5.31)
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From the definition of J(a, b) it therefore follows that

J(a, b) ≤ E4(ψC,γ) = E4(C) = (36/7)C7/2. (5.32)

Let y1 = C and y2 = 0. From (5.27) and (5.31), it follows that the inequali-
ties (4.22) are satisfied by the numbers {xn} defined after (5.30). Therefore, by
part 1 of Lemma 4.10, we must have x2 = 0 and x1 = y1. Thus g1 = ψC,γ for
some γ ∈ R, and gi ≡ 0 and ai = bi = 0 for all i ≥ 2.

We therefore have that

lim
n→∞

E2(φn) = a = 12C3/2 = E2(g1)

lim
n→∞

E3(φn) = b = −36

5
C5/2 = E3(g1).

Also, from (5.27) we have that (36/7)C7/2 ≤ J(a, b), and combined with (5.32),
this gives

lim
n→∞

E4(φn) = J(a, b) =
36

7
C7/2 = E4(g1). (5.33)

In particular, we have now shown that g1, and hence also every element of S(C),
is a minimizer for J(a, b).

From Lemmas 5.1 and 5.2, we have that, for m = 2, 3, 4,

Em(φn) = Em(v1n) +

n∑

i=2

Em(vin) + Em(wn) + ǫmn ,

where lim
n→∞

ǫmn = 0. From Lemma 5.6 we conclude that

lim
n→∞

E2(v
1
n) = lim

n→∞
E2(θ

1
n) = E2(g1) = a = lim

n→∞
E2(φn)

lim
n→∞

E3(v
1
n) = lim

n→∞
E3(θ

1
n) = E3(g1) = b = lim

n→∞
E3(φn).

Therefore for m = 2 and m = 3 we have

lim
n→∞

[
Em(wn) +

n∑

i=2

Em(vin)

]
= 0. (5.34)

When m = 2, (5.34) immediately implies that

lim
n→∞

[
‖wn‖L2(R) +

n∑

i=2

‖vin‖L2(R)

]
= 0. (5.35)

We claim that when m = 3, (5.34) implies that

lim
n→∞

[
‖(wn)′‖L2(R) +

n∑

i=2

‖(vin)′‖L2(R)

]
= 0. (5.36)
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To prove this, since lim
n→∞

∫

R

|wn|3 = 0 by Lemma 5.4, it is enough to show that

lim
n→∞

n∑

i=2

∫

R

|vin|3 = 0. (5.37)

Let ǫ > 0 be given. By (5.13), we can choose N1 such that

lim sup
n→∞

n∑

i=N1

∫

R

|vin|3 < ǫ.

Therefore, there exists N2 such that for all n ≥ N2,

n∑

i=N1

∫

R

|vin|3 < ǫ.

For each fixed i ≥ 2, since gi ≡ 0, it follows from Lemma 5.6 that lim
n→∞

‖vin‖H1(R) =

0, and hence by Sobolev embedding that lim
n→∞

‖vin‖Lp(R) = 0 for all p ≥ 2. So

there exists N3 such that for all n ≥ N3,

N1−1∑

i=2

∫

R

|vin|3 < ǫ.

Then for all n ≥ max(N2, N3),

n∑

i=2

∫

R

|vin|3 < 2ǫ,

proving (5.37) and (5.36).
Define φ̃n(x) := φn(x+ x1n) for n ∈ N. From (5.3) we have

φ̃n = θ1n +

n∑

i=2

ṽin + w̃n

for all n ∈ N, where ṽin(x) := vin(x+ x1n) and w̃n(x) := wn(x+ x1n). Therefore

‖φ̃n − g1‖H1(R) ≤ ‖θ1n − g1‖H1(R) +

n∑

i=2

‖ṽin‖H1(R) + ‖w̃n‖H1(R),

and so from Lemma 5.6, (5.35), and (5.36), we conclude that φ̃n(x) converges
strongly to g1 in H1(R).

In particular, since {φ̃n} is bounded in H2(R), it follows by the same argu-
ments used to prove Lemma 5.7 that

lim
n→∞

∫

R

φ̃n(φ̃
′
n)

2 =

∫

R

g1(g
′
1)

2
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and

lim
n→∞

∫

R

φ̃4n =

∫

R

g41 .

Therefore

lim
n→∞

∫

R

(φ̃′′n)
2 = lim

n→∞

(
E4(φ̃n) +

5

3

∫

R

φ̃n(φ̃
′
n)

2 − 5

16

∫

R

φ̃4n

)

= E4(g1) +
5

3

∫

R

g1(g
′
1)

2 − 5

16

∫

R

g41 =

∫

R

(g′′1 )
2.

Hence we have that
lim
n→∞

‖φ̃n‖H2(R) = ‖g1‖H2(R). (5.38)

But, from the weak compactness of the unit sphere in Hilbert space, we may
assume by passing to a further subsequence that {φ̃n} converges weakly in
H2(R), and the limit must be g1. From (5.38) it then follows that {φ̃n} must
converge strongly to g1 in H2(R). This implies that

lim
n→∞

‖φn − ψC,γ+x1
n
‖H2(R) = 0,

which, since ψC,γ+x1
n
∈ S(C) for all n ∈ N, shows that {φn} converges strongly

to S(C) in H2(R). This then completes the proof of part 1 of Theorem 2.6.

Proof of part 2 of Theorem 2.6. Assume that (2.9) holds. Applying
part 2 of Lemma 4.2 with A = (a/12)1/3 and B = (−5b/36)1/5, we obtain that
there exists a unique pair of numbers y1 and y2 such that 0 < y2 < y1 and (4.3)
holds. Define C1 = y22 and C2 = y21 ; then we have 0 < C1 < C2 and

E2(C1, C2) = 12
(
C

3/2
1 + C

3/2
2

)
= a

E3(C1, C2) =
−36

5

(
C

5/2
1 + C

5/2
2

)
= b.

(5.39)

Therefore, for every pair (γ1, γ2) ∈ R
2, we have E2(ψC1,C2;γ1,γ2) = a and

E3(ψC1,C2;γ1,γ2) = b; and hence from the definition of J(a, b) we have that

E4(ψC1,C2;γ1,γ2) = E4(C1, C2) =
36

7

(
C

7/2
1 + C

7/2
2

)
≥ J(a, b). (5.40)

Let {xn} be the numbers defined after (5.30). From (5.27), (5.39), and (5.40)
it follows that, for these numbers, the inequalities (4.27) hold, along with the
inequality

∞∑

i=1

x7i ≤ y71 + y72 .

Therefore, by part 2 of Lemma 4.10, we must have that xi = 0 for all i ≥ 3,
and so we conclude that

x31 + x32 ≤ y31 + y32

x51 + x52 ≥ y51 + y52

x71 + x72 ≤ y71 + y72 .
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It therefore follows from Lemma 4.5 that x1 = y1 and x2 = y2.
We thus see that (after relabelling the numbers D1i and D2i if necessary),

we can reduce consideration to two possible cases: Case I in which

0 < D11 = C1 < D21 = C2,

and D1i = D2i = 0 for all i ≥ 2, and Case II in which

0 = D11 < D21 = C1, 0 = D12 < D22 = C2,

and D1i = D2i = 0 for all i ≥ 3.
In Case I, we have that g1 = ψC1,C2,γ1,γ2 for some (γ1, γ2) ∈ R

2. Then

lim
n→∞

E2(φn) = a = E2(g1)

lim
n→∞

E3(φn) = b = E3(g1),

and from (5.27) and (5.40) we have that

lim
n→∞

E4(φn) = J(a, b) = E4(g1).

In particular, this implies that g1, along with every other element of S(C1, C2),
is a minimizer for J(a, b).

The same argument as in the paragraphs following equation (5.33) now shows
that the translated sequence φ̃n(x) = φn(x + x1n) converges strongly in H2(R)
to g1. Hence

lim
n→∞

‖φn − ψC1,C2,γ1+x1
n,γ2+x

1
n
‖H2(R) = 0,

which shows that {φn} converges strongly to S(C1, C2) in H2(R). This com-
pletes the proof of part 2 of Theorem 2.6 in Case I.

We turn now to Case II. In this case, we have that g1 = ψC1,γ1 and g2 =
ψC2,γ2 for some (γ1, γ2) ∈ R

2; and gi ≡ 0 for all i ≥ 3. Then from (5.39) we
have that

lim
n→∞

E2(φn) = a = E2(g1) + E2(g2)

lim
n→∞

E3(φn) = b = E3(g1) + E3(g2),

and from (5.27) and (5.40) we have that

lim
n→∞

E4(φn) = J(a, b) = E4(g1) + E4(g2). (5.41)

In particular, this implies again that every element of S(C1, C2) is a minimizer
for J(a, b). However, now it is no longer the case that one can translate the
functions in the sequence {φn} to obtain a strongly convergent sequence in
H2(R). Instead, we must modify the argument in the proof of part 1 of the
Theorem, as follows.

Repeating the argument used above to obtain (5.34), we obtain in this case
that

lim
n→∞

[
Em(wn) +

n∑

i=3

Em(vin)

]
= 0 (5.42)
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for m = 2 and m = 3. When m = 2, (5.42) immediately implies that

lim
n→∞

[
‖wn‖L2(R) +

n∑

i=3

‖vin‖L2(R)

]
= 0.

Also, by the same proof used above to prove (5.37), we have in this case that

lim
n→∞

n∑

i=3

∫

R

|vin|3 = 0, (5.43)

and together with Lemma 5.4 and (5.42) for m = 3, this implies that

lim
n→∞

[
‖wn‖H1(R) +

n∑

i=3

‖vin‖H1(R)

]
= 0. (5.44)

Since, by the Sobolev embedding theorem,
∫

R

∣∣wn(w′
n)

2
∣∣ ≤ ‖wn‖L∞(R)

∫

R

(w′
n)

2 ≤ C‖wn‖3H1(R),

it follows that

lim
n→∞

∣∣∣∣E4(wn)−
1

2

∫

R

(w′′
n)

2

∣∣∣∣ = 0, (5.45)

and hence
lim inf
n→∞

E4(wn) ≥ 0. (5.46)

From (5.6) and (5.41), we have

lim
n→∞

E4(φn) = lim
n→∞

(
n∑

i=1

E4(v
i
n) + E4(wn)

)
= E(g1) + E(g2).

Now observe that, by the same argument used to deduce (5.37) and (5.43) from
(5.13), it follows from (5.14) that

lim
n→∞

n∑

i=3

∫

R

[∣∣∣∣v
i
n

(
vin

′)2
∣∣∣∣+ |vin|4

]
= 0. (5.47)

Therefore we can write

lim
n→∞

E4(φn) = lim
n→∞

[
E4(v

1
n) + E4(v

2
n) +

1

2

n∑

i=3

∫

R

(
vi ′′
n

)2
+ E4(wn)

]
. (5.48)

For every sequence {nk}k∈N of integers approaching infinity, it follows from
(5.47), (5.48), and Fatou’s Lemma that

lim
k→∞

E4(φnk
) ≥ lim inf

k→∞
E4(v

1
nk
) + lim inf

k→∞
E4(v

2
nk
) +

1

2

∞∑

i=3

lim inf
k→∞

∫

R

(
vi ′′
nk

)2
+ lim inf

k→∞
E4(wnk

)

= lim inf
k→∞

E4(v
1
nk
) + lim inf

k→∞
E4(v

2
nk
) +

∞∑

i=3

lim inf
k→∞

E4(v
i
nk
) + lim inf

k→∞
E4(wnk

).

(5.49)
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We claim now that
lim
n→∞

E4(wn) = 0 (5.50)

and, for every i ∈ N,
lim
n→∞

E4(v
i
n) = E4(gi). (5.51)

For otherwise, we would have either lim sup
n→∞

E4(wn) ≥ ǫ for some ǫ > 0, or

lim sup
n→∞

E4(v
i0
n ) ≥ E4(gi0) + ǫ for some i0 ∈ N and some ǫ > 0. In either case it

would follow from Lemma 5.8 and (5.46) that there exists a sequence of integers
{nk}k∈N approaching infinity for which (5.49) implies

lim
k→∞

E4(φnk
) ≥

∞∑

i=1

E4(gi) + ǫ.

But then from (5.41), since gi ≡ 0 for i ≥ 3, we obtain that

lim
k→∞

E4(φnk
) ≥ lim

n→∞
E4(φn) + ǫ.

This contradiction proves our claim.

From (5.45) and (5.50) we conclude that lim
n→∞

∫

R

(w′′
n)

2 = 0, and together

with (5.44) this gives that

lim
n→∞

‖wn‖H2(R) = 0. (5.52)

For all i ∈ N, since {θin}n∈N converges to gi strongly in H1(R) and weakly
in H2(R), and since (5.51) implies that lim

n→∞
E4(θ

i
n) = E4(gi) as well, it follows

from the same argument used to prove (5.38) that

lim
n→∞

‖θin − gi‖H2(R) = 0.

Therefore, we have

lim
n→∞

‖vin − ψCi,γi+xi
n
‖H2(R) = 0 for i = 1, 2; (5.53)

and
lim
n→∞

‖vin‖H2(R) = 0 for i ≥ 3. (5.54)

From Corollary 3.4, we see that lim
n→∞

|x1n−x2n| = ∞, since |x1n−x2n| ≥ r1n+r
2
n

and lim
n→∞

r1n = lim
n→∞

r2n = ∞. From (5.3) and the triangle inequality, we have

‖φn − ψC1,C2,γ1+x1
n,γ2+x

2
n
‖H2(R) ≤ ‖v1n − ψC1,γ1+x1

n
‖H2 + ‖v2n − ψC2,γ2+x2

n
‖H2

+
∥∥ψC1,γ1+x1

n
+ ψC2,γ2+x2

n
− ψC1,C2,γ1+x1

n,γ2+x
2
n

∥∥
H2

+

k∑

i=3

‖vin‖H2 + ‖wn‖H2 .
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But by Lemma 2.1, (5.52), (5.53), and (5.54), all the terms on the right-hand
side of the preceding inequality have limit zero as n goes to infinity. This then
completes the proof of part 2 of Theorem 2.6.

Proof of Corollary 2.7. Corollary 2.7 follows from Theorem 2.6 by a
standard argument, which we include here for the reader’s convenience. Suppose
C1 and C2 are given such that 0 < C1 < C2, and define

a = E2(C1, C2) = 12(C
3/2
1 + C

3/2
2 )

b = E3(C1, C2) =
−36

5
(C

5/2
1 + C

5/2
2 ).

Then from Lemma 4.2 it follows that a and b satisfy (2.9), and so the assertion
about convergence of minimizing sequences to S(C1, C2) follows from Theorem
2.6.

To prove stability, we argue by contradiction: if S were not stable, then
there would exist a sequence of initial data {u0n}n∈N in H2(R) such that
lim
n→∞

d(u0n, S) = 0 and a number ǫ > 0 and a sequence of times {tn}n∈N such

that the solutions un(x, t) of KdV with initial data un(·, 0) = u0n would satisfy

d(u(·, tn), S) ≥ ǫ (5.55)

for all n ∈ N. Let φn = u(·, tn) for n ∈ N. Since E2, E3, and E4 are continuous
functionals on H2(R), and are conserved under the time evolution of the KdV
equation, we have

lim
n→∞

E2(φn) = lim
n→∞

E2(u0n) = E2(C1, C2) = a

lim
n→∞

E2(φn) = lim
n→∞

E3(u0n) = E3(C1, C2) = b

lim
n→∞

E4(φn) = lim
n→∞

E4(u0n) = E4(C1, C2) = J(a, b).

Hence {φn} is a minimizing sequence for J(a, b), and so must converge strongly
to S in H2(R). But this then contradicts (5.55).

6 Acknowledgements

The authors would like to thank Jerry Bona for introducing us to the problems
considered in this paper, and more generally for his help and guidance over
many years.

References

[1] J. Albert, Concentration compactness and the stability of solitary-
wave solutions to nonlocal equations, in Applied analysis (Baton
Rouge, LA, 1996), Contemp. Math., 221, Amer. Math. Soc., Prov-
idence, RI, 1999.

48



[2] J. Albert, A uniqueness result for 2-soliton solutions of the KdV equa-
tion, Discrete and Continuous Dynamical Systems - A 39 (2019),
3635–3670.

[3] J. P. Albert, J. L. Bona, and N. V. Nguyen, On the stability of KdV
multi-solitons, Differential Integral Equations 20 (2007), 841–878.

[4] T. B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. Lon-
don Ser. A 328 (1972), 153–183.

[5] J. Bona, On the stability theory of solitary waves, Proc. Roy. Soc.
London Ser. A 344(1975), 363–374.

[6] H. Brezis and J.-M. Coron, Convergence of solutions of H-systems or
how to blow bubbles, Arch. Rational Mech. Anal. 89 (1985), 21–56.

[7] T. Cazenave and P.-L. Lions, Orbital stability of standing waves for
some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982),
549–561.

[8] L. A. Dickey, Soliton equations and Hamiltonian systems (1st edition),
World Scientific, 1991.

[9] L. A. Dickey, Soliton equations and Hamiltonian systems (2nd edi-
tion), World Scientific, 2003.

[10] P. Gérard, Description du défaut de compacité de l’injection de
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