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Abstract

We use profile decomposition to characterize 2-soliton solutions of the
KdV equation as global minimizers to a constrained variational problem
involving three of the polynomial conservation laws for the KdV equation.

1 Introduction

The variational properties of multi-soliton solutions of the Kortweg-de Vries
(KdV) equation have played a central role in the study of this equation since
shortly after the discovery of its remarkable properties in the 1960s. An early
milestone was the paper [12] of Lax, in which it is pointed out that multi-
soliton profiles are critical points of constrained variational problems in which
the constraint functionals and the objective functional are conserved under the
flow defined by the KdV equation. This suggested that it might be possible to
establish stability properties of multi-soliton solutions by using the conserved
quantities as Lyapunov-type functionals.

Benjamin [4] (see also Bona [3]) took a first step in this direction by showing
that solitary-wave profiles are local minimizers in H*(R) for the conserved func-
tional F3, subject to the constraint that Fs be held constant (see Section 2] for
the definition of E;), and deducing the orbital stability of solitary-wave solutions
as a consequence. Later, the work of Cazenave and Lions (see for example, [7],
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and the expository treatment in [I]) established that solitary-wave profiles are
actually global minimizers of this variational problem in a strong sense: every
minimizing sequence for the variational problem has a subsequence which, after
appropriate translations, converges in H'(R) to a solitary-wave profile. Orbital
stability of solitary waves is an immediate consequence.

Maddocks and Sachs [I8] generalized the theory of Benjamin and Bona to
obtain a stability result for multi-soliton solutions of KdV. A key step in their
proof was to show that the profiles of N-soliton solutions are local minimizers
in HV(R) of the conserved functional Ex ., when the functionals Es, Es, ...,
Eny1 are held constant. Their proof, like that of Benjamin and Bona for single
solitons, did not yield information about global minimizers of the variational
problem.

In this paper, we consider the special case N = 2 of the variational problem
considered in [I8]: that is, the problem of minimizing E; when Es and FE3 are
held constant. In our main result, Theorem below, we show that indeed
2-soliton solutions represent the global minimizers for this variational problem.

An easy consequence of Theorem is a stability result for 2-soliton solu-
tions in H2(R), stated below as Corollary 271 Of course, this is only a special
case of the stability result of [I8], which was asserted for N-solitons for general
N, not just for N = 2. Moreover, in recent years a number of papers have
appeared on the topic of stability of multi-solitons which have improved on the
result of [I§]. In particular, Killip and Visan [II] have proved a stability re-
sult for N-soliton solutions of KdV which is in some sense optimal: it asserts
stability in H !, or more generally in any space H® with s > —1. Instead of
the variational characterization of multi-solitons used here or in [I8], they use
a different variational characterization, which is motivated by the inverse scat-
tering theory for KdV, yet which is well-adapted to potentials in low-regularity
Sobolev spaces where the classical inverse scattering theory does not apply. We
also note the recent work of Le Coz and Wang [15], who by building on and
elucidating the work of [I8] obtain a stability result for N-soliton solutions of
the modified KdV equation. Their methods should be transferrable to other
integrable equations as well; and in particular it would be worth using them to
revisit the stability theory for KdV multisolitons.

We feel that the result and proof of Theorem are interesting in their
own right, apart from the consequences for stability theory. The result settles,
at least in the case N = 2, the question of whether multisolitons are actually
global minimizers of a natural variational problem for KdV, expressed in terms
of polynomial conservation laws which can be viewed as action variables in a
formulation of KdV as an infinite-dimensional Hamiltonian system. It can thus
be viewed as a step towards obtaining an analogue for KdV on the real line of the
elegant theory produced for the periodic KdV equation by Lax [13] and Novikov
[21]. The proof has the advantage of simplicity: it shows that the result is a
straightforward consequence of the profile decomposition, a general phenomenon
unconnected with the KdV equation or its structure, once one shows that 2-
soliton profiles are minimizers for the constrained variational problem when
consideration is restricted to the set of multi-soliton profiles. In other words,



the fact that 2-soliton profiles are global minimizers in H? can be shown to follow
from the profile decomposition, together with the fact that they are minimizers
within the set of all multi-soliton profiles.

An important caveat, however, is that the argument can only proceed be-
cause of the uniqueness result for 2-solitons stated as Theorem below; and
such uniqueness results can be very difficult to prove in other settings. In fact,
one of the main reasons we have restricted ourselves to 2-solitons in the present
paper is that an analogue of Theorem is not yet available for general N-
solitons (see [2] for a discussion of what remains to be shown).

The plan of the remainder of the paper is as follows. In Section 21 we review
some basic properties of N-soliton solutions and polynomial conservation laws
for the KdV equation, state our main result Theorem 2.6, and sketch its proof.
In Section Bl we review the profile decomposition, following [19]. In Section Ml
we analyze a finite-dimensional minimization problem which arises from restrict-
ing the admissible functions in (24) and 21) to N-soliton profiles. Section [l
contains the proof of our main result, Theorem 2.6 and concludes with a proof
of Corollary 2.7

Notation.
If E is a measurable subset of R and 1 < p < oo, we define LP(E) to
be the space of Lebesgue measurable real-valued functions v on E such that

lullrey = (f5 [ulP dx) P is finite. In the case when E = R, we sometimes
denote LP(R) by simply L?, and denote the norm of u in L?(R) by ||ul| .

When E is an open set in R, for [ € N, we define the L?-based Sobolev
space H' = H'(E) to be the closure of the space C*°(E) of all infinitely smooth
real-valued functions on E with respect to the norm

! diu\’ i
||u||HL<E>—<§ / ( dwi) da:> |

Note that H(E) = L?(E). In the case when E = R, we sometimes denote
H'(R) by simply H!, and denote the norm of u in H'(R) by ||u|| g:.

For z € R and r > 0 we denote by B(x,r) the open ball in R centered at x
with radius 7, or in other words the interval (z — r, 2 4+ r). Also, for any subset
E of R, we denote by xg the characteristic function of E, so that xg(x) = 1
for x € E and xg(xz) =0for z ¢ E.

2 Statement of main result

We begin by reviewing the definition and some basic properties of N-soliton
solutions of the Korteweg-de Vries (KdV) equation, and the associated sequence
of polynomial conservation laws. For more details and further references, the
reader is referred to, for example, [8] and [9]; the early papers [12 13| [14] of
Lax are also very readable.



Suppose N € N, 0 < C; < --- < Cx and (y1,...,75) € RY. An N-soliton
profile function is a function of the form

wcl »»»»» CN3Y1Lye YN (I) = 3(D//D)/

where D is defined as the N x N determinant of Wronskian form,

n YN
Y )
D:D(ylvayN): 1 N )
N—-1 N—-1
P

with
yi (@) = eVOiE) 4 (—1)i~te V@it 1 N

From N-soliton profile functions, we can construct IN-soliton solutions of the
KdV equation,
Ut + Uy + Upzy = 0, (2.1)

simply by defining

where for j =1,..., N,
7i(t) = a; + Cjt,
and (ay,...,ay) € RY is arbitrary.
In particular, a single-soliton profile is obtained by taking N = 1, in which
case we have, for C' > 0 and v € R,

7/}C,W($) = 3(D//D)/
where D = ¢VC(@=7) 4 ¢=VC(@=7) In other words,
3C
cosh?(VC(z — 7))

Then a single-soliton solution of the KdV equation is obtained by taking

U(LL', t) = "/JC,'y(t) (JJ)

where v(t) = a + Ct and a € R is arbitrary.

If the constants ~v1,...,yny are widely separated, then the profile function
Yey,...Cnim,...yn Closely resembles a sum of single-soliton profiles Zfil Ve vy -
A particular instance of this well-known fact that we will use below is the
following:

Yo (z) =

Lemma 2.1. Suppose 0 < C; < Cs; y1,72 € R; and {z}} and {x}} are
sequences such that

. 1,2 _

Then

nh_)ngo HwCh'}’l‘i’z}z + 1/’02,72%6?1 - wCl,melJrz}“'szrzi HH2(]R) =0.



Proof. This follows immediately from Lemma 3.6 of [3]. O

The variational problem we are concerned with here has, as objective and
constraint functionals, polynomial conservation laws for the KdV equation.
These are functionals of the form

j—2
Ej(u)—/RP(u,uz,um,...,%> dx

where 7 > 2 and P is a polynomial in its arguments. They are conservation
laws in the sense that, if u(x,t) is a solution of ([2.J), then (at least formally),

d

Bz, 1) = 0

for all t € R. As shown for example in [14], the KdV equation has an infinite
family of such conserved functionals, the first three of which are given by:

Ey(u) = / luiw - §uui + iu4 dx.
L 2 6 32

Sobolev embedding theorems imply that for each N > 0, Enyo defines
a continuous functional on the Sobolev space HY = HY(R) of real-valued
functions whose derivatives up to order N are in L?(R). For u € HY, we
denote by VEj(u) the Fréchet derivative of Ej at u, which coincides with the
Gateaux derivative of Ej, and is therefore defined as a linear functional on HN
by

VEg(u)[v] = lim Bilu+ev) = E(u),
€e—0 €

and identified with a function VEj(u)(z) in the usual way, so that VE(u)[v] =
Jg VEk(u)(z) -v(z) dx for v € HY. In particular, the Fréchet derivatives of the
first few functionals are given by

VE3(u) = u,
1
VEs3(u) = gy — Eu,
VE;(u) = Ugpgr + gum + %(uz)2 + gug.

For fixed 0 < Cy < --- < Cy, define

S = S(Cl, ey CN) = {wChm,CN;’h,-.-,’YN (CL‘) : (’)/1, A ,’YN) S RN} . (2.2)



It is well-known (for a proof, see for example Theorem 3.8 of [2]) that there
exist constants Ag, ... Any1 such that each ¢ € S satisfies the ordinary differ-

ential equation
N+1

VEN12(¢) = Y MVER(1). (2.3)
k=2

Thus N-soliton profiles are (non-isolated) critical points for constrained varia-
tional problems involving the functionals £;. The family of ordinary differential
equations ([Z3)) is collectively known as the stationary KdV hierarchy. Due to
work of Novikov, Its/Matveev, and Gelfand/Dickey in the 1970’s (see [2] for
references), it is known that each equation in the hierarchy has the structure of
a completely integrable Hamiltonian system, and indeed can be explicitly solved
by integration.
In the case N = 2, equation (Z3]) takes the form

VE4 (1) = X2VE2(¥) + AsVE3(1), (2.4)

or
1 5 " 5 / 5 7 1
W U+ G+ 500 = det = 207+ 50,

A fact which is crucial for the proof of our main result below is that there is no
choice of the numbers A2, A3 for which (24) has any solutions in H?(R) besides
1-soliton and 2-soliton profiles:

Theorem 2.2 (|2]). Suppose 1 € H? is a solution of 24, in the sense of
distributions, for some Ao, A3 € R. Then 1) is either a 1-soliton or a 2-soliton
profile for the KdV equation.

The proof given in [2] for Theorem relies on the fact that, as mentioned
above, (Z4]) can be explicitly integrated.

We will also make crucial use of the fact that, for all k£ > 2, Ej is constant
on S, with its value on S given by

36 _
Er(Cy,...,Cn) = (1) === P2, (2.5)

To prove (2.0)), one first shows that it is valid in the case of a single-soliton profile,
when N =1 (cf. equation (3.18) of [18]). For a general N-soliton profile ¢)(z) =
Yoy Cnins..yw (), one then proves (2.5]) by considering a solution u(x,t) of
@I) with u(x,0) = ¢(x). Since wu(z,t) resolves into widely separated single-
soliton profiles as t — oo, it follows that tli)rgo Ey(u(z,t)) = Ex(Ch,...,CN).
But since Ej, is a conserved functional for KdV, it then follows that Ej(¢) =
Ei(Cy,...,Cyn) as well.

We now consider the constrained variational problem of minimizing the func-
tional E; over H?(R), subject to the constraints that E> and Es be held con-
stant. This is the same variational problem considered, in the case N = 2, in



the stability theory for N-solitons presented in [I8]. Whereas it was shown in
[18] that 2-soliton profiles are local minimizers of the variational problem, we
will show in Theorem that they are global minimizers (and in fact, by the
uniqueness result Theorem 22 every global minimizer is a 2-soliton profile).
Moreover, every minimizing sequence for the problem must converge strongly
in H?(R) to the set of minimizers.

We begin by introducing some notation concerning the variational problem.

Proposition 2.3. Suppose (a,b) € R2. Then there exists a nonzero function g
in H*(R) such that E2(g) = a and E3(g) = b if and only if (a,b) € X, where

Y= {(a,b)€R2:a>O ande—ma5/3},

36 /1\°

Proof. From Cazenave and Lions’ variational characterization of solitary waves
(see for example Theorem 2.9 and Proposition 2.11 of [I]), we know that for
all a > 0 and all g € H'(R) such that Ex(g) = a, we have F3(g) > —ma®/3;
and the minimum value F3(g) = —ma®/? is attained when (and only when)
g = Yc,~, where C = (a/12)%/3 and v € R is arbitrary. It follows that if g is a
nonzero function in H?(R) with F2(g) = a and E3(g) = b, then (a,b) € 3.
Conversely, suppose (a,b) € . For a > 0, define go(z) = Vayc(az),
where C' and v are as above. Then Es(go) = a for every oo > 0, F3(g0) =
—ma®/® when a = 1, and E3(gq) — +00 as @ — oco. Therefore, since b >
—ma®/?, the intermediate value theorem implies the existence of some o € 1,00
for which E3(gs) = b. Thus by taking g = g, we can satisfy g € H?(R
Es(g) = a, and E3(g) = b.

and

O—<

For (a,b) € X, define A(a,b) C R by

A(a,b) = {r € R : for some g € H*(R), Fs(g) = a, E3(g) = b, and E4(b) = r}.

(2.6)

By the definition of 3, the set on the right-hand side is nonempty, and we can
therefore define

J(a,b) = inf A(a,b). (2.7)

(Notice that we do not exclude here the possibility that J(a,b) = —oo. However,
as shown below at the beginning of Section [ in fact J(a,b) > —oo for all
(a,b) € 3.)

Definition 2.4. Suppose (a,b) € X. We say that a function ¢ € H*(R) is a
minimizer for J(a,b) if E2(¢) = a, Es(p) = b, and E4(¢) = J(a,b). We say
that a sequence {¢y,} of functions in H?(R) is a minimizing sequence for J(a,b)
if nh_}Ir;O Es(¢n) = a, nh_)rr;o Es(¢n) =0, and nh_)rr;o Ey(¢n) = J(a,b).



From the uniqueness property stated in Theorem 2.2] it follows that if min-
imizers for J(a,b) exist, then they must of necessity be 1-soliton or 2-soliton
profiles:

Proposition 2.5. Suppose a and b are real numbers and v € H? is a minimizer
for J(a,b). Then uw must be either a 1-soliton profile or a 2-soliton profile. In
other words we have u(x) = YD, Doy, (€) for some real numbers D1, Da, v1,
Yo, with 0 < Dy < Da.

Proof. According to Theorem 2 on page 188 of [16], if u is a regular point of the
constraint functionals F3 and E4, meaning that the Fréchet derivatives V E3(u)
and VE4(u) are linearly independent, then there must exist real numbers Ao
and Az such that the equation VE,(u) = A2V E3(u) + A3V E2(u) holds, at least
in the sense of distributions. In this case, by Theorem[2.2] u is either a 1-soliton
or a 2-soliton profile. On the other hand, if u is not a regular point of the
constrained functionals, then u satisfies the equation VEs5(u) = AV Es(u) for
some A € R, and it is an elementary exercise (see for example Theorem 4.2 of
[2]) to show that the only possible solutions of this equation in H? are 1-soliton
profiles. |

However, the preceding result of course leaves open the question of whether
any 1-soliton or 2-soliton profiles are in fact minimizers for J(a,b). Our main
result determines the set of values of (a,b) within ¥ for which minimizers for
J(a,b) exist; and for such values of (a,b) determines the value of J(a,b), de-
scribes all the minimizers for J(a,b), and describes the behavior of minimizing
sequences for J(a,b). If S C H?(R), we say that a sequence {¢,} converges to
S in H%(R) norm if

d((bn, S) = 1/1;IéfS ||¢n — wHH?(R) —0 asn— o0,
or, equivalently, if there exists a sequence {¢,,} of elements of S such that
lim ||¢n - 1/}nHH2(R) =0.
n—oo

Theorem 2.6. Suppose (a,b) € X; that is, a > 0 and b > —ma®/>, where

5/3
=% ()"
1. If

b=—ma’/?, (2.8)

then every minimizing sequence for J(a,b) converges to S(C) in H*(R)
norm, where S(C) is as defined in [Z2), with C = (a/12)*/> = (=5b/36)%/5.
Every element of S(C) is a minimizer for J(a,b), and J(a,b) = E4(C).

2. If

0 B/3
% >b > —ma®?, (2.9)



then every minimizing sequence for J(a,b) converges to S(C1,Cs) in H?(R)
norm, where (C1, Cs) is the unique pair of numbers such that 0 < Cy < Cs,
Ey(Ch,Co) = a, and E3(Cq1,C2) = b. Every element of S(Cy,Cs) is a
minimizer for J(a,b), and J(a,b) = E4(C1,Ca).

3. If
5/3

ma
b>

>~ (2.10)

then there do not exist any minimizers for J(a,b) in H?.

We remark that the method used below to analyze the behavior of mini-
mizing sequences under the assumptions (Z8) or ([29) should also be applicable
in case (2I0) holds, and suggests that in the latter case, minimizing sequences

{¢n} should, as n — oo, come to resemble superpositions of widely separated
5/3

single-soliton profiles. Thus, for example, if b = —% we expect that if {¢, }

is a minimizing sequence for J(a,b), then there will exist a number C' > 0 and

sequences {71, } and {v2,} with lim |y1,, — 72,| = 0o such that
n—oo

n]‘l{lgo ||¢n - (wc771n + wc772n)||H2 =0.

5/3
Similarly, if b > —%,
sequence for J(a,b) would resemble a superposition of three or more single-
soliton profiles, two of which have equal amplitudes and whose distance from
each other increases to infinity as n — oco. We do not pursue this topic further
here, however.

We also remark that the method of proof of Theorem 2.6 should apply as well
to the variational problems satisfied by N-soliton profiles for general N € N.
One important obstacle we have encountered, however, is that of proving an
analogue of Theorem 2.2} i.e., of showing that for all possible choices of the
numbers Ao, ..., An41, the Euler-Lagrange equation

we expect that the functions in a typical minimizing

VEN+2(’(/J) = AQVE2(¢) + -+ )\N+1VEN+1(’(/J) (2.11)

has no solutions in HY besides N-soliton profiles. As noted in [2], the explicit
integration of equation (Z.I1]) can be carried out for general N just as it can for
N = 2, whenever the value of (Ag, ..., Ax41) corresponds to that of an N-soliton
profile; but technical difficulties arise in proving that solutions corresponding to
other values of (\a,..., A\nyy1) are singular.

An immediate consequence of Theorem is a stability result for 2-soliton
solutions of the KdV equation. This recovers (by a different proof) the special
case N = 2 of the general result for N-soliton solutions given by Maddocks and

Sachs in [I§].



Corollary 2.7. Suppose 0 < Cy < Cy. Then every minimizing sequence {¢y, }
for J(E2(C1,Cs), E3(Cy,Cs)) converges strongly to S(Cy,Cs) in H*(R). More-
over, S = S(C1,Cy) is stable, in the sense that for every e > 0 there exists § > 0
such that if ug € H*(R) and d(ug, S) < 6, then d(u(-,t),S) < € for all t > 0.

Remark. Tt follows from this stability result that there are C! functions 7y (¢)
and 2 (t) defined for ¢ > 0 such that

||u('7t) - 1/}01,02771(15)7’72(15)||H2(R) <€

and |v{(t) — C1] < e, |¥4(t) — Ca| < € for all t > 0. See [3].

We conclude this section by sketching the idea of the proof of Theorem [2.0]

which is given in the succeeding sections.

0 5/3
Suppose (a,b) € ¥ with —ma®? < b < TC/LB
minimizing sequence for J(a,b). We can apply the profile decomposition, in the

form of Corollary B4l to the sequence {p,} defined by

Pn = |¢n|2 + |¢;z|2 + |¢Z|2

, and suppose {¢,} is a

It follows that we can decompose ¢,, as
n
(bn = Z ’U; + wp,
i=1

where the sequence {w,, } is vanishing in the sense of Definition 3] and for each
i € N the sequence {v! },,cn concentrates around some sequence {z?, },en, in the
sense of Definition From the concentration property of {v},cn and the
fact that {¢,} is a minimizing sequence, it follows that the sequence {v? },en
can be suitably translated so that it converges, weakly in H?(R) and strongly
in H'(R), to a minimizer g; for the variational problem

Ey(gi) = inf {E4(¢) : ¢ € H*(R), Ea(¢) = ai, E3(¢) = b }

for some real numbers a;, b;. As a critical point of this constrained variational
problem, ¢ = g; must satisfy the Euler-Lagrange equation (2Z.4]). From Theorem
it then follows that for each ¢ we have g; = ¥'p,,,p,; for some numbers Dj;
and Do; with 0 < Dq; < Do;.

In parts 1 and 2 of Theorem [ZG] our assumption on (a, b) implies that there
exist numbers C7 and Cy with 0 < Cy < Cy such that Ea (¢, .c,) = a and
Es(vyc, .c,) = b. Therefore, by definition of J(a,b), we have that

J(a,b) < Ex(Yer ca) = (36/7) (€] + €F).

From the profile decomposition and the fact that {¢,} is a minimizing sequence,

10



we can obtain that
Z Ea(g:) = 362 (D}; + D3;) < Jim_ Es(én) = 36 (Ci+03)

—36 — -36
ZES gz - 5 Z (Di +Dgz) < nlggoEB(an) - 5
1=1

(€7 +E3)
= 36
Z Ei(g:) = — Z (D}, + D) < lim Ey(¢n) < (017 +C3).
i i=1
Permuting the terms of the sequence (D}{Q, D;{2, D;{2, D;é2, D;{Q, D;éQ, o)
so that they form a decreasing sequence (1, 22,23, ... ); and defining y; = 021/2
and yg = 011/2, we thus have that

(o]
>l <yl +ys
i=1
o0
>l 2 i+
i=1

o0
>l <yl +yi.

We analyze this system of inequalities in Section @] where we show (cf. Lemma
[AT0) that it can only be satisfied if 1 = Cs, 29 = C1, and x; = 0 for all ¢ > 3.
This can be interpreted as saying that, among the N-soliton profiles of the KAV
equation, the only ones which could possibly solve the variational problem are
1-soliton profiles (in the case when C; = 0) and 2-soliton profiles (in the case
when C; > 0).

This information, combined with the control on the functions {v¢} and w;,
afforded by the profile decomposition, is enough to allow us to deduce that the
functions in the minimizing sequence {¢, } are either of the form

bn () = Yoy,00(T + 20) + 70 (7)

for some sequence {z,,} of real numbers, where r,, — 0 in H?(R); or of the form

On(7) = de, (x + xp) + by (@ + 27) + 7 (2)

for some pair of sequences {zl} and {22} of real numbers with |z} — 22| —
oo, where again r,, — 0 in H?(R). In either case, this shows that the set of
minimizing functions for the variational problem consists of the set S(Cy, Ca),
and that {¢,} converges to S(C1,Cs) in H*(R) norm.

Part 3 of Theorem 2.6 will follow from a simpler argument: under the given
assumptions on (a,b), no 1-soliton profile or 2-soliton profile ¥ can exist sat-
isfying the constraints F2(¢)) = a and E5(¢)) = b. But any minimizer for the
variational problem must satisfy the associated Euler-Lagrange equation (24]),
and therefore by Theorem must be either a 1-soliton profile or a 2-soliton
profile. Hence no minimizers can exist.

11



3 Profile decomposition

The idea of the proof of Theorem is to use an elaboration of the method of
concentration compactness, known as profile decomposition, which details the
ways in which a sequence of measures of bounded total mass can lose compact-
ness.

The technique of profile decomposition dates back to [10] and in some form
even earlier (see for example [6]). We will use a version which is due to Marig [19].
Actually, although the result of [I9] is valid for arbitrary bounded sequences of
Borel measures on any metric space, for simplicity of notation we here restrict
consideration to bounded sequences of nonnegative functions in L*(R).

Definition 3.1. We say that a sequence { f,} of nonnegative functions in L*(R)
is vanishing if for every r > 0, we have

lim sup/ fn=0.
n—oo yGR B(y,r)

Definition 3.2. If {f.} is a sequence of nonnegative functions in L*(R) and
{zn} is a sequence of real numbers, we say that { f,} concentrates around {x,,}
if for every e > 0, there exists r. > 0 such that

/ fn<e
R\B(zn,re)

for every n € N.

Theorem 3.3 ([19]). Suppose {pn} is a sequence of nonnegative functions which
is bounded in L*(R). Then either {p,} is vanishing, or there ewists a subse-
quence of {pn} (which we continue to denote by {pn}), which satisfies one of
the following two properties: either

(1) there exist k € N and for each i € {1,...,k} a number m; > 0 and sequence
of balls {B(z%,7%) }nen in R with lim r}, = oo, such that

n—roo

(a) B(xi,ri) N B(xl,ri) =0 for alln € N and all i,j € {1,...,k} with

i F ]
(b) for eachie {1,....k}, lim Pn =My,
nee B(x},,r} /2)
(c) for eachie {1,...,k}, lim pn =0,

o0 B(ai, ri)\B(xl, 1, /2)

(d) for each i € {1,...,k}, the sequence {pnXB(zi ri)tnen concentrates

nn

around {x% }nen,
(e) the sequence {pnXr\Ur_ B(ai ri) fneN is vanishing;

or

12



(2) for eachi € N there is a number m; > 0 and a sequence of balls {B(2!,ri )V pmiit1.iv2,.
in R, with lim r; = oo, such that
n— o0

(a) B(xi,ri)N B(zl,ri) =0 for all i,j € N with i # j, and alln € N
withn > 1 and n > j,

(b) for each i € N, lim P = My,
N0 B, 1 /2)
= 1
(c) for eachi €N, / pn < 57,
; B(a}, i)\ B (%7}, /2) 2

(d) for each i € N, the sequence {pnXB(ai ri)}n>i concentrates around
{Iiz}nzia
(e) the sequence {pnXr\UT_, B(ai ri)tnen i vanishing, and

(f) if for each N € N and each n > N, we define g\ = PnXR\UN | B(ai, ri)
and define the increasing function ¢ (r) for r >0 by

gy (r) = sup / g,
yeR JB(y,r)

then

N—o00 \ 7—00 n—00

lim <lim <1imsupq,ﬁv (r))) =0. (3.1)

One can view B as saying that although, for any given value of N, the
sequence {g},en is not necessarily vanishing, it does come closer, in some
sense, to being a vanishing sequence as N — oo.

To shorten our proof of Theorem 2.6 we observe that the two cases in
Theorem B3] can be combined into one, if we drop the requirement that m; > 0
for each i:

Corollary 3.4. Suppose {p,} is a sequence of nonnegative functions which
is bounded in L*(R), and suppose {p,} is not vanishing. Then there exists a
subsequence of {pn} (which we continue to denote by {pn}), a sequence {m;}ien
of nonnegative numbers, and for each i € N a sequence of balls {B(x!,, %)} nen
mn R, with lim rfz = o0, such that

n—r00

(a) B(zl,ri) N B(zd,ri) =0 for all i,j € N with i # j, and all n € N,

(b) for each i€ N, lim Pn =My,

"0 B(xi, i /2)

- 1
(c) for eachieN,Z/ pngi,
n=i /B

(zi ,ri)\B(xi ,ri /2)

ni'n ni'n

(d) for eachi € N, the sequence { pnX B(zi ri)fnen concentrates around {z% }nen,

n'n

13



(e) the sequence {pnXr\U"_ B(ai ri)}neN 18 vanishing, and

(f) if for each N € N and each n € N, we define g\ = PXB\UN | B(zi, ri)> OGN
define the increasing function ¢ (r) for r >0 by

gy (r) = sup / gy,
yeR JB(y,r)
then

. . . N o
(3 (smamrr)) o

Proof. To obtain Corollary Bl from Theorem B3] we observe that if (2) holds
in Theorem B3] then the statements in Corollary B.4] will also hold if we simply
define B(z%,rl) = 0 when i < n. So we need only consider the case when (1)
holds in Theorem

Define E,, = R\ U, B(z,r.) for n € N. Since {pnx5, },ey is vanishing,
then for each fixed j € N,

lim sup / pnXE, = 0.
B(y,5)

n—oo yER

Therefore we can define a sequence n; < ns < ng < ... such that

1
sup/ P XE,. < =
yER J B(y,j) . ! 2+

for all j € N. If we now pass to the subsequence {p,, } jen, continuing to denote
this subsequence by {pn, }nen, we have that

1
SUP/ PnXE, < 57 (32)
yeR JB(y,n) 2ntt

for all n € N. Also, because of part (1)(c) of Theorem B3l by passing to a
further subsequence we can guarantee that

/ < ! (3.3)
pn < 5 :
B(zi, i \B(ai ri /2) 2ntl

n'n n'n

holds for all i € {1,2,...,k} and all n € N as well.

For each i > k + 1, we set m; = 0, and for all n € N we define r!, = n if
n > i and ri = 0 if n < i. For each fixed n € N, we define a sequence {x}
inductively for all i@ > k + 1 by choosing ¢, to be any real number such that
B(x!,ri) is disjoint from U;;llB(:v{l, rJ). Then we have that nh_)rrgo rt = oo for
each i € N, and part (a) of the Corollary holds.

For all i > k + 1 and for all n € N, since B(xi,r%) C E,, it follows from

B2) that
1
~/B(' ,)p"§2n+l' (3.4)




This implies that parts (b) and (¢) of the Corollary hold for all i > k4 1. For
1 < i < k we already know that part (b) holds, and part (c) follows from (B3]).
To prove part (d), we fix ¢ such that ¢ > k + 1, and observe that by (B4,

for every € > 0 we can find N € N such that / PnXB(zi i) < € for all n > N.
R

Also, for each n € {1,..., N}, since puXp(yi i) € L'(R), we can find rc,, >0

such that
/ PnXB(ai, ri) < €.
R\B(z} ,re,n)

Then if we set r. = max{rc1,...,7r.n}, we have that

/ PrXB(xi i) < €
R\B(x%,,7¢)

for all n € N. This proves part (d) for all i such that i > k4 1, and we already
know that part (d) holds for 1 <i < k.

Finally, part (e) of the Corollary follows immediately from part (1)(e) of
Theorem B3] as does part (f) of the Corollary; since (1)(e) of Theorem
implies that nh_)ngo ¢ (r) = 0 for every 7 > 0 and every N > k. O

We record the following important feature of vanishing sequences.

Lemma 3.5. Suppose 2 < p < oco. Then there exists a constant Cp, > 0 such
that for all u € H'(R),

1 1

27 p 2

|u|Lp<R>scp<sup / |u'|2+|u|2dw> lllfm  (35)
yeR JB(y,1)

Proof. This lemma is standard; a proof can be found, for example, in [19. O

Corollary 3.6. Suppose {g,} is a bounded sequence in H*(R). If {|gn|*+|g,|*}
is vanishing, then lim ||g,||L» =0 for all p > 2.
n—oo

4 Minimizers among the set of N-solitons

Lemma 4.1. Suppose A, B >0 and k € N. If the system of equations

k
E xd = A3
i=1

. (4.1)
S
i=1
has a solution (x1,...,x) with x, >0 fori=1,...,k; then
N5 g
- <= <1 4.2
(1) <3 o)
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Proof. Suppose the system (@I) has a solution (z1,...,zx) with z; > 0 for
i = 1,...,k. Defining p; = x3/A> for each i, we have that 0 < p; < 1, so
p?/ P < pi. Therefore
k k
(B/AP = p}* <Y pi=1,
i=1 i=1
which implies that B/A < 1. Also, by Hélder’s inequality we have
i X 3/5 , 4 2/5
A3 :Zx? < (Zx?) (Z 1) :ng2/57
i=1 i=1 i=1
which implies that (1/k)%/' < B/A. O
Lemma 4.2. Suppose A, B > 0 and consider the systems
Vit ys = A
5 s 5 (4.3)
yi+y, =B
and 5 5 5
2 +ys = A
Y1 T Y2 (4.4)

2y7 +y3 = B

for (y1,y2) in the first quadrant U = {(y1,y2) € R? : y1 > 0,2 > 0}.

1.

If B/A =1, then @3) has exactly two solutions in U, given by (0, A) and
(A,0), and and (@A) has exactly one solution in U, given by (0, A).

If (1/2)?/ < BJA < 1, then [@&3) has exactly two solutions in U, which
are of the form («, 8) and (8, a),where 0 < a < §; and @A) has exactly
one solution in U, which is of the form (v,d) where 0 < ~v < 4.

If B/A = (1/2)*/%5, then @&3) has exactly one solution in U, which is
given by (A/2Y/3, A/2'/3); and @) has exactly two solutions in U: one
given by (A/2'/3,0), and one of the form (v,d) where 0 <y < 6.

CIf (1/3)/% < BJA < (1/2)¥/'°, then @3) has no solutions in U, and

ZA) has exactly two solutions in U, which are of the form (v1,01) and
(v2,02), where 0 < 1 < 61 and 0 < da < 2.

If BJA = (1/3)%/15, then [@3)) has no solutions in U, and @) has exactly
one solution in U, which is given by (A/3Y/3, A/31/3).

Proof. Suppose (y1,y2) solves ([L3]) and y1,y2 > 0. Letting 0 = y2/y1, we obtain
that y; = A/(1+6%)'/3 and g(0) = (B/A)'®, where

5\3
g(t) = % (4.5)
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Conversely, for each choice of § > 0 such that g(f) = (B/A)'S, we have a
solution (y1,42) of @3) given by the positive numbers y; = A/(1 + 6%)'/? and
y2 = Oy1. Therefore, for a given choice of B/A, the number of solutions (y1,y2)
of @3)) with y; > 0 and y2 > 0 is equal to the number of solutions § > 0 to the
equation g(6) = (B/A)'.

We have that ¢g(0) =1, g(1) =1/4, tli)ngo g(t) =1, and

15(1 +#9)2(t* — 2)

g'(t) = FYOE ,

so ¢g(t) is monotone decreasing for 0 < ¢ < 1 and monotone increasing for
1 <t < co. Therefore the equation g() = (B/A)'® has exactly two solutions
when B/A € ((1/2)?/1%,1), and has exactly one solution when B/A = (1/2)%/1.
The assertions of the lemma concerning ([3)) then follow.

On the other hand, when y; > 0, we have that (y1,yz2) solves (4] if and
only if y; = A/(2 4 0)'/3, yo = Oy1, and h(h) = (B/A)'S, where

5\3

h(t) = M
(2+1t3)5

We have h(0) = 1/4, h(1) = 1/9 and limy_,o h(t) = 1, and

30(2 +°)2(t* — t2)

"= =G er

so that h(t) is monotone decreasing for 0 < ¢ < 1 and monotone increasing
for 1 <t < co. When B/A = (1/3)3/1% the equation h(f) = (B/A)' has
exactly one solution, namely § = 1. When B/A € ((1/3)%/15,(1/2)%/1%), the
equation h(f) = (B/A)' has exactly two solutions, one of which is greater than
one and one of which is less than one. When B/A = (1/2)?/'5 there are again
exactly two solutions, one of which is § = 0 and the other of which is a value
6 > 1. Finally, when B/A € ((1/2)%/',1), there is exactly one solution to
h(0) = (B/A)', and it satisfies @ > 1. These statements imply the assertions
of the lemma concerning (£4)). O

Definition 4.3. Let
D={(A,B)eR?>:A>0,B>0,(1/2)*» < B/A<1}.
For each (A, B) € D, we define
m(A, B) =y +ys,

where (y1,y2) is the unique solution to [@E3) satisfying 0 < y1 <y and y2 > 0,
guaranteed by Lemma [{.2

Lemma 4.4.

17



1. For all (A, B) € D, and for every A > 0, we have

m(AA,A\B) = \'m(A, B). (4.6)

2. The function m(A, B) is continuous on the set D.

Proof. The homogeneity property (£ of m(A, B) is an easy consequence of the
definition of m(A, B). To see that m(A, B) is continuous on D, observe first that
for given (A, B) € D, the numbers y; and ys given in Definition are given
by yo = A/(6°+1)Y/3 and y; = Oya, where 6 = A(A, B) is the unique solution in
[0,1] of the equation g(f) = (B/A)', and g is the function defined in @) Since
g is continuous and monotone decreasing on [0, 1], and ¢([0, 1]) = [1/4, 1], then
the inverse map h : [1/4,1] — [0, 1] defined by h(g(t)) = ¢ is also continuous.
Therefore §(A, B) = h((B/A)') is continuous on D, so yz and hence also y;
depend continuously on (A, B). So m(4, B) = y{ + y is continuous on D as
well. O

Lemma 4.5. Suppose y1 > y2 >0 and z1 > z2 > 0, and

Atz <yt
A 45 2yl + s

Then
2+ 25 > Y1 + s (4.8)

Equality holds in (R) only if y1 = z1 and yz = 2.

Proof. We may assume y; > 0 and z; > 0, or otherwise there is nothing to prove.
Let A3 =y 4+ 43, B® = 4} + %3, and C7 = 4] + 3. By Lemmas B and @3]
we have (1/2)2/15 < B/A < 1. Define 6 = yo/y; € [0,1] and 0 = zy/2; € [0,1],
and define the function ¢ as in (@35). Then from the definitions of A and B we
deduce that g(0) = (B/A) € [1/4,1]; and from ) we have that

B A

(1+65)1/5 =71 = (14 63)1/3 (4.9)

which implies that g(f) > (B/A)' = g(f). Since, as shown in the proof of
Lemmald2l ¢ is monotone decreasing on [0, 1], it follows that § < 6. Now define

(1467)°

k(t) := YO

Then as in the proof of Lemma [£2] an elementary computation (whose details
we omit) shows that k(t) is, like g(t), strictly decreasing on [0, 1] and strictly

increasing on [1,00). Therefore k(0) > k(0) = (C/B)3®, and so
C - B
(14617 = (14 65)1/5

(4.10)
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Taken with (9), this implies that

C

- - 411
(RO )
which yields (L3]).

If equality holds in ([@8]), then equality also holds in [@IT]), so from (9] and

(#I0) we have that equality holds in (£I0). Therefore k(0) = k(0). Since k is
strictly decreasing on [0, 1], this implies that § = 6, and hence g(f) = g(#) and
so B/A = B/A. But from (1) we have that A < A and B > B, so it follows
that A = A and B = B. Hence z; and 2o satisfy the same equation (L3) as 11

and 12, so by Lemma 2] we must have z; = y; and 2o = y». O

Lemma 4.6. Suppose A, B > 0 and (1/3)>/'5 < BJA < 1. Fora = (x1,x2,13) €
R3, define

gi(z) = o} + a5+ a3

go(w) = af + a3 + a3

fla) = 2] + 2] + ],

and define
I ={zeR®: gi(z) = A° and go(w) = B”}

4.12
Q:{xERB:x1>O,x2>O,andx3>0}. ( )

Then T'NQ is nonempty, and is a smooth one-dimensional submanifold of R3.

If we assume further that BJA > (1/2)2/'% then T' NQ must consist of three
nonempty connected components I'1, T's, and I's. For each i = 1,2,3, let T;
denote the closure of T';, and OT; the boundary of T';, in the topology of R3.
Then the restriction of f to I; takes its mazimum value at a single point in T';,
and takes its minimum value [, on OU;. For each (x1,x9,23) € I' N, we
have f(x1,x2,x3) > fimin-

Proof. Since (1/3)?/'® < B/A < 1, then by Lemma E2] there exists a solution
(y1,92) = (7,0) to @A) with 0 < v < 6. Setting 1 = 22 = v and x3 = 0
then defines a point Q = (v,7,0) € ' N Q, and shows that I' N is nonempty.
The fact that I' N Q is a smooth one-dimensional submanifold of R? follows
from the implicit function theorem (see, for example, Theorem 1.38 of [22]) and
the fact that the gradients Vg (x) and Vga(z) are linearly independent at all
x € I'N Q. Indeed, if for some c¢1,co € R, with ¢1, co not both zero, we have
c1Vgi(x) + caVga(z) = 0, then it follows easily that 1 = 29 = x3. But then
g1(x) = A% and go(x) = B® imply that B/A = (1/3)%/1, contradicting our
assumption about B/A.

Now suppose we are at a point xg = (210,20, %30) € I' N Q where xoy #
x30. (Note that the point @ defined above is such a point.) Then from the
implicit function theorem it follows that there exists a neighborhood I of g
in R such that for all ¢ € I, there are unique numbers x2(t) and x3(t) so that
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(t,z2(t), z3(t)) € I'NQ. Moreover, z2(t) and x3(t) are smooth functions of ¢ € I,

with

dxs t2 (23 — 1?)

dt 3::2,2)(173 —x3) (1.13)

d$2 t (
5(
2

dt  z3(z3 —23)
on I.

In particular, this analysis when applied to the point @) shows that that
there are functions zo(t) and x3(t) defined for ¢ in a neighborhood I of v such
that (¢, z2(t),z3(t)) € TN for all ¢ € I, and equations [@I3]) hold on I. From
#I3) we have that % < 0 at t = =, so there exists an € > 0 such that
0 < z2(t) <t < axs(t) for all ¢ such that v <t <y +e.

Assume now further that B/A > (1/2)?/15. Then by Lemma B2} the point
(77,0) defined above is the only solution (y1,y2) to @A) with y; > 0 and y2 > 0.
Let S be the set of all ¢y > v such that there exist smooth functions x2(t), x3(t)

defined for all t € (v,t0) such that (¢, z2(t),23(t)) € T NQ and
0 < xa(t) <t <uas(t)

for all t € (v,%p). Then S is nonempty and bounded, since ¢ € S and ¢ty < A
for all ty € S. Therefore S has a finite supremum, which we denote by t,,.
Equations (I3) imply that % < 0 and % < 0 for all t € [y,tm), so xa2(t)
and x3(t) have limits as ¢ approaches t,, from the left; we denote these limits
by x2(ty,) and z3(t,,) respectively.

We have that 0 < x9(ty,) < tn < 23(tm). It cannot be the case that
0 < x2(ty) < tm < x3(ty), for then an application of the implicit function
theorem would allow us to extend z2(t) and z3(¢) to an open interval containing
t = tm,, contradicting the maximality of ¢,,. Since z3(t) is nonincreasing on
[, tm) and z2(7y) = 7y, we have x2(ty,) < tm. Also, we cannot have 0 < xo(t,) <
tm = x3(tm), for then setting ¥ = t,,, = x3(t,,) and 5= a9 (tsm) would produce
a solution (y1,y2) = (%,0) of @d4) with 0 < § < 4, which is distinct from
(v,6) and therefore contradicts the uniqueness of positive solutions to ([EAI).
Finally, if 0 < z2(ty,) = tm = x3(tm), we would obtain a point in T' N Q where
x1 = w9 = x3, which we have already seen is impossible. We have thus ruled
out all the possibilities in which z2(t,,) > 0, so it follows that z2(t,,) = 0.

We have shown that I' N 2 contains the smooth arc

{(t7$2(t)7$3(t)) el S t S tm}

whose endpoints are Q and P; = (t,,,0, 23(t,,)) € 0. By symmetry, I'NQ also
contains a smooth arc whose endpoints are @ and Py = (0, ty, z3(ty)) € O
The interior of the union of these two arcs is a connected component I'; of I'N§2.

We now consider the problem of maximizing or minimizing f(z) subject
to the constraint « € T'y. If the maximum or minimum occurs at an interior
point & = (21, 22,23) € I'1, then 2 must be a critical point of the constrained
variational problem, in the sense that

Vf(x) = MVgi(z) + A2V ()
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for some A1, Ay € R. This implies that
729 = 3\ 22 + 5hox)
for i = 1,2,3. Letting z; = 22, we have for all i, j € {1,2,3} that

5A
72(21 —2j) =22 — 2]2

Therefore either z; = z; or z;+ 2+ j = 5A2/7. It follows that the set {21, 22, 23}
cannot consist of three distinct numbers: if, for example, z1; # z3 and 2o # 23,
then we must have that 21 + z3 = 2o + 23 = 5A2/7, so 21 = z2. It follows
then from Lemma that the only possible critical points of f on I' N () are
Q= (v,7,9), (v,0,7), and (v,9,7v). But since 6 > ~, and x3 > 2 at all points
on I'y except @, we conclude that @ is the only critical point of f on I';.

We have now shown that either f takes its maximum value over I'; at @ and
its minimum value at P; and P», or f takes its minimum value over T, at Q and
its maximum value at P, and P». To decide between these two alternatives, it
suffices to determine whether the restriction of f to I'; has a local maximum or
a local minimum at @). For this purpose, we use the second derivative test for
constrained extrema, as expounded for example in [20].

Consider the Lagrangian L(z) defined by

L(z) = f(z) = Mi(g1(2) = A%) = Aa(g2(2) — B),
and form the “augmented Hessian”, a 5 x 5 matrix H defined by

0 B
n-e o)

where B is the 2 x 3 matrix given by
B - |:_(gl)ac1 —(91)a2 —(91)13}
—(92)er —(92)as  —(92)as]
C = B7 is the transpose of B, and D is the 3 x 3 Hessian of L, given by
Dij = Ly, fori,je{1,2,3}.

Here and in what follows we use 0 to denote matrices of various sizes (in this
case, a 2 X 2 matrix) with all zero entries.

We want to compute the determinant det H of H at x = @. Calculations
show that at z = @, we have

B_ —372 =342 —36°
T =5yt =Byt -5t

and
—14~3(7? 4+ 6%) 0 0
D= 0 1493 (42 + 62) 0 ;
0 0 —146%(7% + 6?)
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from which one finds that

—450~¢

det(0 ~BD'C) = —

and
det D = —143(y% — 6%)36%4°.

Let Iy be the 2 x 2 identity matrix, and I3 the 3 x 3 identity matrix. Then the

matrix
I, 0
-D-IC I3

has determinant equal to one, and so we can write

B -1
detH_det{O B] [_ - 0]_det[A BDTC B _

C D||-D'C Iy 0 D|
=det(A —BD'C)det D = 14 - 450775%(y% — §2)3.

Since v < 4, we have shown that det H < 0 at o = Q. It is easy to check
that B has full rank at x = @). Therefore, according to Theorem 36 on p. 58 of
[20], we have that v’ Dv < 0 for all nonzero column vectors v € R? satisfying
Bv = 0. In other words, the Hessian D of L is negative definite in all directions
v which are tangent to both the surfaces {x : g1(z) = A3} and {z : go(x) = B°}
at . From a classical result in the calculus of variations (see for example page
334 of [I7]), it follows that f(x) has a local maximum at @ subject to the
restriction x € I'y.

We have now proved that the restriction of f takes its maximum over I'; at
Q = (v,7,96) € 'y and its minimum value at the endpoints P; = (¢, 0, 23(tm,))
and Py = (0,t,,,23(tm)) of T'y. Let us define frax = f(Q) and fuin = f(P1) =
f(P2). Since the restriction of f to I'; has no critical points in T';\Q, we must
have f(z) > fmin for all z € T'y.

By symmetry, it follows that I' N € also contains a component I's which
includes the point (7, d, ) and whose closure has endpoints (0, z3(t,,), t;n) and
(tm, x3(tm),0); and a component I's which includes the point (4, ,~y) and whose
closure has endpoints (23(tm), 0, tmm) and (z3(tm), tm, 0). Furthermore, we know
that the maximum value of f on Ty is attained at (v, 6,7), and is equal to finax;
the minimum value of f on I's is attained at the boundary points of T, and is
equal to fmin; and f(x) > fun for all z € T'y. Similar statements hold for T's.

To complete the proof of the Lemma, it remains only to show that I' N 2
contains no other components besides I'1, I's, and I's. To prove this, assume
Qo = (210,220, 230) € I'NQ; we wish to show that Qo € I'; for some i €
{1,2,3}. We know z19, 220, and 39 cannot all be equal (for this would imply
B/A = (1/3)%/1%); and if any two of @19, T20, T30 are equal, then by Lemma
E2 Qo must be one of the points (v,7,6), (7,d,7), or (J,7,7), and therefore
lies in one of the I';. We may therefore assume without loss of generality that
r10 < 20 < x30. Then the analysis above shows that there exists some € > 0
and a smooth curve z(t) = (¢, z2(t), z3(t)) mapping I = (r19 — €, T19 + €) into
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I' N Q, such that z(0) = Qo, and satisfying ¢ < x2(t) < z3(¢) on I. Moreover,

x(t) satisfies equations ([@I3), which imply that 42 < 0 and % > 0 on 1.
Now let S be the set of all tyg > x19 such that there exist smooth functions

x2(t), x3(t) defined for all ¢ € (z10,%0) such that (¢, z2(t),z3(t)) € T NQ and

0<t<at) <axs(t)

for all t € (z10,t0). Again we define t,,, = sup S and let x5(t,,) denote the
limit of z2(t) as t approaches t,, from the left. The implicit function theorem
and the maximality of ¢,, imply that we must have xo(t,,) = t,,. But this
then implies that the point (tm,x2(tm),z3(tm)) = (v,7,0) € T'1. Therefore
the set S1 = {t € [xo1,tm] : (t,22(t), x3(t)) € T'1} is non-empty. The uniqueness
assertion in the implicit function theorem tells us that for every t € [xq1, t,], the
equations g1 (z) = A% and go(z) = B® determine x5 and 3 uniquely as functions
of x1 in some open neighborhood of (¢, z2(t), z3(t)). Therefore Sy is open. On
the other hand, Sy is clearly closed, by the continuity of z3(t) and x3(¢) and
the fact that T'; is a closed subset of R%. So we must have S = [zo1, %], and
therefore @y € I';. O

Remark: In the case (1/3)%/'° < B/A < (1/2)*/1, a similar analysis
shows that I' N Q is homeomorphic to a circle, and contains all six of the
points Py (v1,71,01), Pa(v1,01,71), P3(61,71,01), Pa(v2,72,02), Ps(2,02,72),
and Ps(02,v2, d2), where (y1,01) and (2, d2) are as described in part 4 of Lemma
Moreover, points P;, P», and Ps are local maxima for the restriction of f
to I' N Q; while points Py, Ps, and FPs are local minima. However, we will not
need these facts in what follows.

Lemma 4.7. Suppose x1,...,x, are numbers such that T1 > xo > -+ > x, >
0, with 1 > 0, and for each m € {1,...,n} define

m 1/3
(5
Z:Ll s
By, = (Z xf) .
i=1

Then for each m € {2,...,n},

Bm—l Bm
> W
Am—l o Am

(4.14)

and the inequality is strict if x,, > 0.
Proof. The statement is obvious if z,, = 0, so we may assume x,, > 0. Let

(B3 — 29)3
flx) = m Then f(zm) = (Bm—1/Am-1)"" and f(0) = (Bm/Am)'?,
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so it suffices to show that f(z,,) > f(0). Now

1522(B° — A3 22)(B° — 25)2
fl(x): = m(A%m_xxg()ﬁm :E)

So f'(x) > 0 for 0 < z < xg, where zg = /B5,/A3, . But since x,, < x; for all
ie{l,...,m}, we have

m m
3,2 __ E 3 2 E 5 _ b5
Amxm - €Ly LT S €Ly = Bm7
i=1

i=1
80 Ty < xg. Therefore f(x,) > f(0), as desired. O
Lemma 4.8. Let A, B > 0 be such that (1/2)*/'® < B/A <1, and let n € N,
with n > 3. Suppose x1,...,T, are numbers such that x1 > --- > x, > 0, with
xs > 0, and

n
E d = A3
i=1

- (4.15)
fo =B’
i=1
Then .
> al >m(A,B)+E, (4.16)

=1

where E = E(x1,x9,x3) is defined by
E(x1,22,23) := :CI + x; + xg —m((x} + a3+ :vg)l/g, (zF 4+ 25 + x§)1/5). (4.17)

In particular,

E($1,£L‘2,£L‘3) > 0. (418)

Proof. Let A = (23 + 23 + 23)V/3 and B = (25 + 23 + 23)V/°. If we define
I and Q as in (@IZ) with A replaced by A and B replaced by B, then since
x1 > @9 > x3 > 0, the point © = (z1, z2, x3) lies in T'N Q. The inequality (I8
thus follows from Lemma

To prove ([I6), we use induction on n. When n = 3, the result is trivial.
Suppose n > 4 and assume the statement of the lemma is true for n — 1; we
wish to prove it for n.

Suppose that z; > -+ > x, > 0, with 3 > 0, and that (£I5) holds.
If 2, = 0, then we are done by the inductive hypothesis, so we may assume

x, > 0. Let
(48 - a) s

Anfl -
T
B5 _ 25)1/5
B, =B )"
Tp
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and define y; = z;/x, for 1 <i<n—1. Theny; > -+ > y,,—1, and

n—1

3 _ 43
E v = A,
i=1

n—1

5 _ pb
E y; = B, 4.
i=1

From Lemma A7 it follows that B,_1/A,—1 > B/A, and from Lemma 1] we
have that B, _1/A,_ 1 < 1. Hence (1/2)*/® < B,,_1/A,_1 < 1, and we may
therefore apply the inductive hypothesis to the numbers y; > ys > -+ > y,,—1 >
0. There results the inequality

n—1

Z y! > m(An_1,Bn_1) + E1, (4.19)
i=1

where
By =yl +yh +ys —m((yd +ys + )2, (] + s +y5)Y0).

From ([@6), however, it follows that By = E/z, so multiplying [@I9) by z7,
we conclude that

n—1
Z ! >aim(A,_1,Bn 1)+ E. (4.20)
i=1

From Lemma we have that there exist wy, wo with 0 < wy < wy such

that 5 5 5
wy +wy =Aj
w? + wg = Bifl.

By definition of the function m, we have
wl +ws =m(An_1,Bn_1). (4.21)
Letting z1 = xpwy, 22 = xpwa, and 23 = x,, we see that

zf’—l—zg—kzg:AB

5 5 5 5
21+Z2+23:B .

Therefore (z1, 22, 23) is in the closure of the set I' N Q defined in Lemma
From Lemma we see that the boundary of I' N €2 consists exactly of the six
points (0, a, 8), (0,5, ), («,0,8), (5,0,a), (o, 3,0), and (3, a,0). At each of
these boundary points, the function f defined in Lemma takes the same
value o + 87, which by definition is equal to m(A, B). Hence, by Lemma L8]
we have that

f(z1,292,23) > m(A, B).
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Since f(z1,22,23) = ! (1 + w] + w?), using (@2]) we deduce that
x! +x'm(A,_1,Bn_1) > m(A,B).

Therefore, by ([@20),

n n—1
sz = ;vfl + Z ,TZ > xZL + ;vflm(An_l,Bn_l) +E>m(A,B)+ E,
i=1 i=1

as was desired. O
We are now ready for the main results of this section.

Lemma 4.9. Suppose y1 > y2 > 0 and y3 > 0. Let n € N, and suppose
T1,...,T, are numbers such that x1 > --- > x, > 0, and

n
doal <yl
i=1

" (4.22)
Dol >yl + 5.
i=1
1. If n > 2 and y2 = 0, then xo =0 and x1 = y1.
2. If n >3 and z3 > 0, then
- 7 7 7
in Zyl +y2+E(£IJ1,£L’2,CE3), (423)

i=1

where E(x1,x2,x3) > 0 is as in [@I0) and (@IF).

Proof. Define A = (y§’+y§’)1/3, B = (y?+y§’)1/5, A, = (X x3)1/3, and

=11

B,= (3" :105)1/5. From Lemma 1] Lemma 7] and (£22)), we have that

=11

2/15
_Bi_ BB Bu_ B (1) |

-1 o> > (2
A T Ay T Ag T A, A~

5 (4.24)

To prove part 1 of the Lemma, we simply observe that if yo = 0 then
B/A =1, and if 23 > 0 then By/A; > By/As by Lemma 71 Thus ([@24)
immediately gives a contradiction. So if yo = 0, we must have o = 0 and hence
1 =Yi-

To prove part 2 of the Lemma, we first observe that from ([@24]), Lemma
2 and the definition of the function m, we obtain that there exist z; and 2o
with 0 < z7 < 29 and z9 > 0 such that

3 3 3
2+ 25 =A

4.25
zf + zg = B?L ( )
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and 2] + 25 = m(A,, B,,).
Now if n > 3 and x3 > 0, then from Lemma .8 it follows that

sz > m(An, By) + E(x1, 02, 23) = 21 + 23 + E(x1, 29, 23). (4.26)
i=1

But since

23423 < A3

22 4 25 > B,
it follows from Lemma L3 that 2] + 2J > y7 + y2. This, combined with ([Z20),
gives ([@23). O

Note that an interesting, and immediate, consequence of Lemma [4.9 is the
following: among the set of all N-soliton profiles for the KdV equation, the ones
which minimize F, subject to the constraints that F3 and Es be held constant
are precisely the 1-soliton and 2-soliton profiles.

Lemma 4.10. Suppose y1 > ya > 0 and y1 > 0. Let {x,}nen be a sequence
such that 1 > x9 > x3 > --- >0, and

o0
>l <yl
i=1

- (4.27)
> @l =i+,
i=1
1. If yo =0, then xo =0 and x1 = y;.
2. If g > 0, then .
sz >yl + v + E(x1, 19, 3), (4.28)

i=1

where E(x1,x2,23) > 0 is as in (LI1) and [EIF).

Proof. Define A = ( —|—yg)1/3, B = (y?+yg)l/5, Ay = (Zfolx )1/3, and
By = (Zfolx)/; and for n € N define A, = (Z?lx)/s and B,
(Z" ) Y5 Thus hm A, = Aand lim B, = B. From Lemmas 1] and [T

i=1" n—o0
and our assumptlons We have that

1>L>2>...>2 > > 2>
A T Ay — A, ~ T A T AT

B, _ By B, B. B (1)2/15

Part 1 of the Lemma is now proved by the same argument as part 1 of

Lemma ([{9).

To prove part 2 of the Lemma, we suppose n > 3 and x3 > 0, and consider
first the case when the first inequality in (27 is strict: that is, when > 2 a? <
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yi +y3. For each i € N and n € N, define o, = B,,/Bs and ¥, = 7 /c,,. Then
lim,, o @, = 1, and for each n € N we have
n o0
doad, = at =yl b,
i=1 i=1
Also,

n 0o
: E 3 E 3 3 3
lim Lin = T < Y1 =+ Y2,
n— 00
i=1 i=1

so by choosing n sufficiently large we have > ! , z3 <y +y3. We can thus

apply Lemma 9 to x1,, > -+ > 2z, > 0 for all sufficiently large n € N, and
obtain that

Z xZn 2 y'17 + yg + E(Ilnv L2n,, I?m)v
i=1
or
I~ 7o 7,7, 1
o Z% >y Yy + a—7E($17$27$3)-
no_q n
Taking the limit as n — oo then gives the desired result ([E28]).

Next, consider the case when Y .~ z} > v} + y3. Then for sufficiently
large n, ([#22) holds, so by Lemma we conclude that ([£23]) holds, which
immediately implies ([£28]).

It remains then only to consider the case when A, = A and B, = B.
In this case we argue as follows. For each n € N, since B, /A, > (1/2)%/1°,
by Lemma we can choose 21, > 22, > 0 such that A, = 2}, + 23, and
By, = 2}, + z5,; we then have that m(A,, B,) = z{,, + z5,. From Lemma 0]
we have that .

sz >m(Ay, By) + E(x1, 22, 23). (4.29)
i=1
But, by Lemma 6] we have lim m(A,, B,) = m(Ax, Bx) = m(A, B). Tak-
n— oo
ing the limit on both sides of ([@.29]) as n — oo then gives the desired result. O

5 Proof of Theorem

We first prove part 3 of Theorem 2.6 which is an easy consequence of the
results of the preceding sections. Suppose (a,b) € ¥, and suppose that (ZI0)
holds. Assume for contradiction that there exists a minimizer u € H*(R) for
J(a,b). Then by Proposition 25 there must exist real numbers Dy, Do, v1,72
with 0 < Dy < Dy such that w = ¥p, D,y v, Since Ez(¢) = a and E3(¢) =D,
it follows from (23] that

12 (DY + DY*) =a

—? (Df/2 + DS/Q) =b.
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Hence the equations @) hold with A = (a/12)'/3, B = (=5b/36)'/5, k = 2,
T = Di/2, and zo = D;/2. Therefore, by Lemma Il we must have that
B/A > (1/2)?/1>. Further, we cannot have that B/A = (1/2)?/'%, for by part
3 of Lemma 2] this would imply that x; = x5, contradicting the fact that
Dy < Dy. Hence B/A > (1/2)?/*>. But this means that

ma5/3

e

which contradicts our assumption (ZI0). This then completes the proof of part
3 of the Theorem.

Turning to the proof of parts 1 and 2 of Theorem 2.6] we now suppose that
(a,b) € ¥ and either (Z.8)) or (Z9) holds. In particular we must have that b < 0.
Let {¢,,} be any minimizing sequence for J(a,b), so that lim FEs(¢,) = a,
n—00
lim E5(¢,) = b, and lim FE4(¢,) = J(a,b). (Note that minimizing sequences
n—o00 n—00
always exist. For example, from the definition of J(a,b) it follows that we can
choose {r,} to be any sequence in A(a,b) such that r, — J(a,b), and then take
{¢n} such that Es(¢,) = a, E5(¢y,) = b, and Ey(¢y,) = ry, for each n € N.)
Since {Es(¢,)} converges, then {¢,} is bounded in L2 Also, since by
Sobolev embedding and interpolation we have

— 1,
/R (6,7 do = 2B5(60) + 5 /R ”

< 2B3(6n) + Clldnl31ss < 2E3(¢) + Cllbnll 3 [ dnl 12

it follows that s
lénlEn < CL+ l1gall 1),
which implies that {¢,} is bounded in H'. Finally, we have

/R(¢Z)2 dx = 2E4(¢n) +/R (guui - %u4> dz, (5.1)

and since {¢,} is bounded in H!, it follows from Sobolev inequalities that

the integral on the right is bounded. Since {E4(¢,)} is bounded above and

{Jo(¢)? dx} is bounded below, it follows from (G.I) that both these sequences

are in fact bounded. Therefore {¢,} is bounded in H?, and J(a,b) > —oco.
Define

pn =G+ (6) + (6)*.
Since {¢,} is bounded in H?, then {p,} is bounded in L', and we can apply

Corollary B4l to {p,, }.
We observe that {p,} is not a vanishing sequence in the sense of Definition

Bl Indeed, if {p,} did vanish, then it would follow from Lemma that

lim ||¢,||zs = 0, which in turn implies that
n—oo

lim inf Es(¢n) = %liminf/(sb;)z’ > 0.
R

n—roo n—roo
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But on the other hand,
ILm Es(én) =b <0,

giving a contradiction.

Since {pn} does not vanish, then from Corollary 3.4l we obtain a sequence of
balls {B(x,rl)}nen for each i € N, satisfying properties (a) to (f).

Define 7 to be a smooth function on R such that n(z) =1 for |z| < 1/2 and
n(xz) =0 for |z| > 1; and for R > 0, define nr(x) = n(x/R). For each i € N and

n € N, define _ _
vy, (2) = Pn(@)yi (2 — a7,). (5.2)
We then have the decomposition

= iv; + Wy, (5.3)
i=1

where for each n € N we define
wn(x) = (bn(x)ﬁn(x)a
with .
@) = 1= s (3 — 2,).
i=1
For all n € N and i € N, define
Ai = B(xy,, n)\B( 3,7 /2)

= R\B(z},,7,/2)
Wn = R\ Ui: ( :wrviz)'

Then
suppv CB( x, n)

supp w, € W,, U ( i:lA;) (5.4)
suppw, C Up AL

We will need some preliminary results on the behavior of the decomposition
(E3), which we state in the next few lemmas.

Lemma 5.1. We have

nli_)n;OZ/b pn = 0. (5.5)

=1
Proof. For given € > 0, choose N; € N so that Z % < g If n > N; then we
i=N;
can use part (c) of Corollary B4l to write

Z/ anZZ/ pJ__znj\;zl<

=N j=t

DO
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But we also have from part (c¢) of Corollary B4 that for each fixed i € N,

lim pn = 0. Therefore, once N; has been chosen, we can find No € N so

N;—1
that if n > Ny then Z / pn < =. It follows that for n > max(Ny, Na) we

have Z/ pn < €, as desired. O
° Al

Lemma 5.2. Suppose B > 0, and suppose {¢,} is any sequence of functions in
H?(R) satisfying ||¢n|| g < B for alln € N. Let v}, and w,, be defined forn € N
and i € N by (B2) and [B3). Then there exists a constant C > 0 depending
only onn and B (and in particular, not on k or n) such that for all n € N, and
form =2,3,4,

n

Ep(¢n) — Z Em(vfz) = Ep(wy)

=1

<cy [ o (56)
=174

Proof. We substitute (B.3) into Fs( (bn = 3 fR 2, and expand, expressing
E(¢,) as a sum of integrals. Since v, and v} have disjoint supports for i # j,
all integrals in this expression whose integrands contain two factors of v!, with
distinct values of ¢ will vanish. We thus obtain

Ba0n) = > Eavf) + Ealwn) + 3 [ vhar,
i=1 i=1 7R

Since the intersection of the supports of v¢ and w, is contained in A?, and
[l | < |n| and |wy,| < |¢y| everywhere on R, we have

iz wn|—/ o 1wl </A;|¢n|2g/;pn. (5.7)

This then establishes ([B6]) for m = 2.
Substituting (@3] into the expression for Es3(¢, ), we obtain the estimate

Es(¢n) — ZES(UZ’) — Bs(wn)| <

S (bt 1o+ ).

Then we write
iz ||wn|—/ el <€ [ (ol +16 ) <C [ pn
A:l A:l

[ il < oallie [ 1otwal < Clléallim [ pu<C [ o
R Al Al Al
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and similarly for [; |v}||w,|?. (Here and in what follows we use C' to stand for
various constants which depend only on 1 and B.) This establishes (&) for
m = 3.

Finally, to prove (5.6]) for m = 4, we substitute (£3)) into F4(¢,) and write

n

Eu(¢n) = D Ea(v}) = Ea(wy)| <

i=1

C/Z o3 " wi] + oy wn | + [0, [} + o Plwa| + ) 03] wal

s,t>1
s+t<4

(5.9)
All the terms on the right side of (59) can be estimated like the terms in the
preceding paragraphs. For example, we have

[ toaPlund < foullse [ 1otwal < Cléuliie [ pu < Cllonitn [ g
R Al Al Al
/ [0 Pln] < flwa]l e / [0/ < Cllnll~ / pn < Cllull / .
R A A A

Clearly, similar estimates hold for the remaining integrals; we omit the details.
O

Lemma 5.3. In addition to the assumptions of Lemmal5.2, assume that f € H?
with || f|lgr < B. For eachn € N and each i € {1,...,n}, define

(bn:f"i_zvgz""wn'
j=1
J7#i

Then there exists a constant C > 0, depending only on n and B, such that

Ep(n) Z ()| < C / pn+ Cllfllm-2(z:)
i T

(LN
EENE

J

(5.10)
form =2, 3, and 4.

Proof. Proceeding as in the proof of Lemma 5.2 we write

Es(¢n) - ZEQ vl) — Ea(wy)
J?ﬁz
< C/R|fwn| +O; (/RUCU’“ —|—/R|v,jzwn|>
J#i
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n
The sum Z/ |vJ w,, | is estimated as in (5.2). Also, since the support of w, is
=17

i
contained in Z¢, and the same is true of the support of vJ whenever j # i, then

/ |fwnl < [ fll2ziylwnlle < Cllfllz2zi)lldnllLe < CllfllLzz;)-

R

Finally, since the supports of the functions {v/};en are mutually disjoint, and
for j # i are all contained in Z!, there exists C' depending only on n and B

(and not on k, n or i) such that

>[Il <c [ 1foul <Clllia.
j=1R z;,
J#i

This proves (510) for m = 2.

Similarly, (EI0) is proved for m = 3 by expanding F3(¢,,) as in Lemma [5.2]
then using estimates such as (5.8)), together with the estimates

/le'| Yo+l | < Ol ez czsllgnlla < Clf I czs)lldnllan,

/}lel2 D lhl+ wal | < 1 lel fllzcze)lnllce < Cllflp2z),
J#i

and a similar estimate for [, |f|(3;; |03 |2 + |wy |?).

Finally, (5I0) is proved for m = 4 by expanding FE4(¢,) to obtain an ex-
pression similar to (59)), but with additional terms on the right-hand side of the
form

Z/ (P11 L Hoa 2+ L Pl T+ LI s ]) +
i 7R
+/ (LF"wn] =+ [ flwn | + £ wn] + 111 lwn])

R

t

DS AT DITIRat™

st>1 /R i

s+t<4

These can each be estimated by the terms on the right-hand side of (GI0]). For
example, we have

/R P wnl < 11|z ]l /Z A < OB lwn e 22z
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and

1/2
/lellf’llw;I < 1 fllpeelwpll </Z |f’|2> < Cllf e llwnll e[| 1 a2 (z3)-

The remaining terms are estimated similarly. We omit the details, which are
straightforward. O

Lemma 5.4. Suppose 2 < p < oc. Then lim |jwy| rr@) = 0.
n—oo

Proof. For each n € N, we have from B4 that w, = wn (xw, + > i—; Xai)
and w), = w), (xw, + >y XA;)? and from the definition of w, we see that
there exists a constant C' > 0 such that for every n € N and z € R, w2 (z) <

C62(2) < Cpu(a), and (w))2(2) < C (62 (2) + (6} (x))?) < Cpa(a). Thercfore,

we can write

sup [ (u? + (w])?)
B(y,1)

yeR
= sup [/ (w2 + (w)))?) xw, + Z/ (w2 + (w})?) xa
B(y,1) =

yER i—1 Y B(y.1)
< Csup/ pnxw, +C / Pn.-
yER JB(y,1) ; Al
(5.11)
But
lim sup/ pnXw, =0, (5.12)
N0 yeR J B(y,1)

by part (e) of Corollary B4l Combining Lemma Bl (&17]), and (&12) gives

lim sup/ (w2 + (w},)?) dz =0.
B(y,1)

n—oo yGR

Since {w,,}, like {¢,,}, is a bounded sequence in H'(R), the proof is then com-
pleted by applying Lemma O

Lemma 5.5. We have

im limsupZ/ [vi]2 =0 (5.13)
R

1
N—
© n—oo =N

and

J\}lm thUPZ/R[

—00 n—oo
i=N

. O\ 2 .
vl (v;') ‘+ |u;|4] =0. (5.14)
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Proof. For a fixed value of n € N, the supports of the functions {v;}lzln are
mutually disjoint. Therefore, if we define

n

fN,n = Z’U:-zv

i=N

we can write, for all N, n such that N < n,

S [l = [ 1wal®
i=N "R R

Now

yeR

1/2
[ 1al® < Clltwallse <sup [ e+ |fN,n|2)>
R B(y,1)
(5.15)

1/2

1/2

=¢ <Sup/ p”XR\uleuz,r;)) =C(q(1)"",
yeR J B(y,1)

where ¢ (r) is the function defined in part (f) of Corollary B4l (In obtaining
(ET13), we used Lemma along with the facts that the support of fu . lies
outside U, B(x!,,7},), and that |fyn|* and |f} ,[* are majorized pointwise
by Cp,, where C depends only on the cutoff function 7.) Since ¢2 (r) is an
increasing function of r, it follows from part (f) of Corollary B4l that

Nlim limsup ¢*¥ (1) = 0. (5.16)

—00 n—oo

Therefore (B.13)) follows from (E.15)).

Similarly, we can use Lemma to write

3 / it = / ) < CllinnlZgs <sup / (|f;v,n|2+|fN,n|2)>
i=N 7R R B(y,1)

yeR

< Cqy' (1),
(5.17)
and by Holder’s inequality, Sobolev embedding, and (G.15]), we have

i_zn]:\,/ua v, (%’)2' :/R‘fN,n(f]/V,n)2| < </R|f1/\/,n|8/3>3/4 </R|fNﬁn|3)1/3

1/6
< Cllfwnllifiig (a2 (1)

(5.18)
Estimates (&17) and (5I8) together with (E10) then imply (&14). O

Fix i € N, and for n € N define ¢!, (z) = v/, (z + ). Since {0/} en is a
bounded sequence in H2(IR), then by passing to a subsequence, we may assume
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that it converges weakly in H?(R) to some function g; € H?(R). By a diag-
onalization argument, and replacing {¢, }»ey by an appropriate subsequence,
we may assume that for every i € N, the sequence {6 },cn converges weakly
in H*(R) to g;- (In what follows we will often replace sequences by subse-
quences without changing notation.) Further, by again passing to appropriate
subsequences, we may assume that the sequences { E2(60?) }nen and { E3(0%) }nen

converge. Define _ _
a; = lim E»(0;) = lim FEs(vy)

n—00 n—00

Lemma 5.6. For each i € N, {0} },en converges strongly to g; in H'(R).

Proof. First note that by part (d) of Corollary B4l for every € > 0 there exists
R. > 0 such that

|
B(xy,,ri)\B(z},, Re)

for all n € N. By taking R, larger if necessary, we may assume as well that
/ ((91)* + (90)* + g7) <.
R\B(0,R.)

From the definition of #?

", it is easy to see that there exists a constant C' such
that for all n,

163 oy < [ o
(R\B( 2 B(xi,ri)\B(zi,Re)

and therefore

105 = gill i\ B0, R.Y) < 105 || 2R\ B(0,R.)) + |9i 1l H2(R\B (O, R.)) < 2€.

On the other hand, since the inclusion of H?(B(0,R.)) into H'(B(0, R,)) is
compact, then {6}, }nen has a subsequence {0, }ren that converges strongly to
gi in H'(B(0, R.)). Then for all sufficiently large k, (|6}, — gillm1(B(0,r.)) < €
and therefore |60, — gi| g (r) < 3e.

It follows from the preceding that for every e > 0, there exists a subsequence
{07, }ren of {0} }nen such that [|6), — gil|g@) < € for all k € N. By now
taking a sequence of values of € tending to zero and using a diagonalization
argument, we obtain a subsequence of {6? },en which converges to g; strongly
in H*(R). Since the same argument shows that every subsequence of {6 },en
has a subsubsequence which converges to g; in H'(R), it follows that {6? },en
itself converges to g; in H'(R). O

Lemma 5.7. For each i € N, we have

lim / U:’,Pz/ gil? 5.20
Jim [l = [ o (5.20)
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for all p such that 2 < p < oo, and

: i (,i"\? \2
lim [ v, (vn ) = [ gi(g;)°. (5.21)
R R

n—oo
In particular, ‘
lim EQ('U;) = EQ (gz) = ay;
n—oo

n—oo

(5.22)

Proof. Equation ([220) follows from Lemma 5.6l and the fact that, by standard
Sobolev embedding theorems, LP embeds continuously in H*(R) when 2 < p <
oo. For (B.21)), we can write

Lo = a2 = [h=a (o) + [ a6l = dt +a0).

Using Holder’s inequality and Sobolev embedding, we can majorize the integrals
on the right-hand side by

||Ufz - gi||L°°(R)||v7iz”§ll(R) + ||9i||L°o(R)||UZ - gi”Hl(R) (||UZ||H1(R) =+ ”gi”Hl(R))
< Clles, = gilln ey 0k ) + 193wy

Since g; € HY(R), and {v¢ }nen converges to g; in H'(R), the preceding expres-
sion has limit zero as n — oo, proving ([.21)). Finally, (522) follows immediately
from Lemma (5.6 and (520). O

Lemma 5.8. For each i € N,
E4(g;) < liminf E4(07) = liminf Ey(v’). (5.23)
n—o0 n—ro0
Proof. Choose a subsequence {0/, }ren of {0 }nen such that klim Ey(0),) =
—00
liminf E4(07). By the weak compactness of bounded sets in Hilbert space, we
n—oo

can find a further subsequence, also denoted by {6}, }, which converges weakly
in H%(R) to g;. By the lower semicontinuity of the norm in Hilbert space, we
have that

lgill rr2 < lim inf [|67,, | 2
k—o0
Since {0}, }ren converges strongly in H'(R) to g;, this implies that
gl 2 < liminf [[(6;,,)"[| 2.
k—o0

On the other hand, by Lemma [5.7, we have that

5 o 54 - Spi (gi \2 ;4
20+ gt ) = 1 200 (08 2 4 (g1 )t

~/]R( 699w+32gz> kggo ]R( 6 nk( nk)m+32( nk)

Combining the last two statements, we obtain (B.23]). O
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For each i € N, if g; = 0, then obviously a; = b; = 0. If on the other hand
gi is not identically zero, then by Proposition 23] (a;,b;) € X, and so J(a;, b;)
is well-defined by 27). In that case, we have:

Lemma 5.9. For eachi € N, if g; is not identically zero, then g; is a minimizer

for J(a;, b;).

Proof. We prove the lemma by contradiction. If g; is not a minimizer for
J(a;,b;), then there must exist a function h € H? such that Ex(h) = a;,
Es(h) = b;, and E4(h) < E4(g;). Define, for n € N,

hy(z) = hz — 2b)
and

n
én =hy, -i-Z’UZl + wy,.
j=1
J#i
To obtain the desired contradiction, we will show that

lim Ey(dn) =a

n—oo

Jim Ey(60) =
liminf Ey(b,) < J(a,b).
n—oo

To begin with, use the triangle inequality to write

n

E2(¢n) - E2(¢;n) =

j=1

+ | Ba(¢n) — ZE2 (v3) — Ea(wy)| + | B2(v5) — Ea(hy)] .
J#l

We can use Lemma and Lemma with f = h, to estimate the first two
terms on the right-hand side of the preceding inequality, and thus obtain that

Ex(¢n) — E2(én)

<IB(uh) = ot + €3 [ o+ Cllhallzoizy
j=174n

1/2
hnllz2cziy = (/ - W(x) dw) ,
R\B(0,7},/2)

and h € L*(R) and lim 7! = oo, it follows that hm [AnllL2(ziy = 0. Finally,

n—r00

Since

we have that

lim (Ey(v)) — Ea(hy)) = lim (Ey(v)) — Ea(h)) = lim (Ea(v!) — a;) = 0.

n—oo n—r00 n—r00
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Combining these results, we obtain that lim (E3(¢,)—FE2(dn)) = 0,50 lim Ey(¢,) =
n—oo n—00
a.
Similar arguments apply to Es(¢n) — Es(é,) and Ey(é,) — E4(dyn). From
Lemmas and [0.3] we obtain that

|Es(¢n) — Es(¢n)| < |E3(vl,) — Es(hn)| + OZ/A], pn + Cllhnll g1z (5.24)
and
Bi6) = Ba(dw) = Ba(1i) = Eslha) = O [ pn = Cllhallczsy. (529
j=174An

The same considerations as in the preceding paragraph show that it follows from

(G24) that lim Fs(h,) = b. Also, from (5.28) and (5.23) we obtain that
n—r00

liminf [Ey(¢n) — Ea(¢n)] > lim [Es(v},) — Ea(hn)] > Ea(g:) — Ea(h) >0,

n— 00 n—00
and hence
limsup Ey(én) < lim Ei(én) = J(a,b),

n—r00

In particular, it follows that there exists some sufficiently large n for which
Ey(¢n) < J(a,b). But since Ez(¢,) = a and E3(¢,) = b, this contradicts the
definition of J(a,b). O

From Proposition[2.5 and Lemma[5.9] we conclude that for each i € N, there
exist D1i7 Dgi, Y1i,Y2i € R with 0 < Dli < D2i such that

gi(‘r) = ¢D1i>D2i§'Yli>'72i (‘T) (526)

Here we follow the conventions that if Dy; = 0, then ¥p,, Doiiviiive: = YDosivies
and if Dy; = Dg; = 0, then ¢p,, p,; = 0. Also, in what follows we will occa-
sionally omit the subscripts vi; and ~s;, referring to g; simply as ¥'p,,.p,, -

Lemma 5.10. For the numbers Dy; and Da; defined for i € N by (B26), we

have
122 (D3/2 3/2) <a
% (Dif + D5/2) b (5.27)

5 4

37 Z (DL/2 + D7/2) J(a,b).
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Proof. For m = 2,3,4, if we define €,,, for n € N by

€mn = Em((bn) - ZEW(’U:L) - Em(wn)7
i=1

then we have from Lemmas and Bl that lim €,,, = 0.
n— o0

In case m = 2, we have Ey(f) > 0 for all f € L2. Therefore we have, for all
N,n € N such that n > N,

N
> Es(v),) = Ba(¢n) — Z E(vy,) — E2(wn) — €2 < Ea(n) — €2n.
—

i=N-+1

Holding N fixed and taking the limit on both sides as n — oo, and recalling
(E19), we obtain that

ZE2 (g:) = 122 (D3/2+D§{2) <a.

Then taking the limit as N — oo yields the first inequality in (G.27).
Next, we consider the case m = 3. We have, for all N,n € N such that
n>N,

N
ZE3(Ui = E3(¢n) — Z E3(vy,) — Es(wn) — €3n

i=N+1
; / ( <v:;>3) - [ (3w - gui) e

(5.28)
Let € > 0 be given. From (5I3) it follows that there exists N € N such that

lim sup Z /‘vn| <€

n—oo .~ N1

For this fixed value of N, by taking the limit as n goes to infinity of both sides
of (&28) and using Lemma [5.4] we obtain that

_? N (D?i/g 5/2) Zb <b+

i=1

and hence

36 5/2 5/2 36 5/2 5/2
5 o 04 55 (o 02) 20



Since this inequality holds for all € > 0, we have proved the second inequality
in (27).

In case m = 4, we have

ZE4 ) < Es(¢n) + Z/[

i=N+1 } (5.29)
5
’\2 4
+6/an(w )* = 32/an €am,

for all N,n € N such that n > N. Using Lemma [5.4 we see that lim [ w} =0

n—oo R

and

lim
n— oo

/wn(w%)z < lim JJwy oo [lwnl|3 = 0.
R n—00

For given € > 0, by (&.14)), we can choose Ny € N such that for all N > Ny,

lim sup Z /%

n—oo .~ N1

o]+ 2 \v;ﬂ <e.

For each fixed value of N > Ny, taking the limit on both sides of ([29]) as n
goes to infinity and using (2.23]), we then obtain

N
376 Z (DL/2 + D7/2) = ZE4(9i) < J(a,b) +¢
=1 i—1

Since this is true for all N > Ny, it follows that

ﬁoo

7 (DIZ-/2+D7/2)§J(a,b)—|—e

i=1
and since € > 0 was arbitrary, this proves the final inequality in (&.27). O

By Lemma [5.I0, only finitely many of the numbers Dy; and Dsy; can be
greater than any fixed positive number. Therefore it is possible to re-order the
numbers in the sequence

1/2 1/2 1/2 1/2 1/2 1/2
(DY D2, D2 DI D2 DI ) 530

so that they form a non-increasing sequence, whose terms we denote by {z,},
Withl‘l Z,TQ 2,@32

Proof of part 1 of Theorem Suppose that (Z8) holds. We let
C = (a/12)3 = (=5b/36)%/5 > 0. For every v € R, we have

Ey(Ye) = 120%2 =q,

Es(tc.,) = —(36/5)C%/2 = b o3
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From the definition of .J(a,b) it therefore follows that
J(a,b) < Ey(tbc,y) = E4(C) = (36/7)C7/2. (5.32)

Let y; = C and y2 = 0. From (527) and (&31)), it follows that the inequali-
ties ([@22]) are satisfied by the numbers {x,,} defined after (5.30)). Therefore, by
part 1 of Lemma [£10] we must have z2 = 0 and z1 = y;. Thus g1 = ¢¢, for
some v € R, and g; =0 and a; = b; = 0 for all 7 > 2.

We therefore have that

lim Fs(¢,) = a = 12C%2 = Ey(g1)

n—oo

. 36

n—r00

Also, from ([527) we have that (36/7)C7/? < J(a,b), and combined with (532,
this gives

36
lim Ei(¢n) = J(a,b) = =C7/ = Eu(gn). (5.33)
In particular, we have now shown that g1, and hence also every element of S(C'),

is a minimizer for J(a,b).
From Lemmas 5.1l and 5.2] we have that, for m = 2,3, 4,

n

Em(¢n) = Em(“}z) + ZEm(Ufz) =+ Em(wn) + lev

=2

where lim €' = 0. From Lemma [5.6] we conclude that
n—oo

lim Ey(v)) = lim Ey(0)) = Ea(g1) = a = lim Ey(¢y)

n—00 n—00 n—oo
Jim Ey(v,) = lim E3(0,) = E3(g1) = b= lim Ez(¢n).

Therefore for m = 2 and m = 3 we have

i B o) + 30| <0 53
When m = 2, (£34) immediately implies that
nhféo l||wn||L2(R) + Z ||U;||L2(R)] = 0. (5.35)
i=2

We claim that when m = 3, (534) implies that

lim l”(wn)/Hm(R) DY ||<v:;>'||Lz<R>] 0. (5.36)
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To prove this, since lim |w,|> = 0 by Lemma [54] it is enough to show that
n—oo
R

lim / [vf |2 = 0. (5.37)
nﬂoo; R

Let € > 0 be given. By (5.13), we can choose N; such that

n
lim sup Z / [vi | < e.
R

n—oo ’L:Nl
Therefore, there exists No such that for all n > No,
n
3 / Wi < e,
i=N, /R

For each fixed i > 2, since g; = 0, it follows from Lemma[.@that lim ||vfl||H1(R) =
n—roo

0, and hence by Sobolev embedding that lim v}, | z»®) = 0 for all p > 2. So
n—oo
there exists N3 such that for all n > N3,

Ni—1

Z /]R|vf1|3 < e.
i=2

Then for all n > max(Na, N3),

n
> [ laf <2
i=2 /R

proving (B.37) and (E30).
Define ¢, (z) := ¢p(x + x}) for n € N. From (53] we have

G =04+ > Tk + 1y
i=2
for all n € N, where 9! (z) := v¢ (z + z}) and @, (x) := wy(x + zL). Therefore
6 — g1ll ey < 1165 — g1l oy + Z 17,1 51 ) + 1@l 21 ).
i=2

and so from Lemma [5.6, (535), and (5.36), we conclude that ¢, (x) converges
strongly to g in H(R).

In particular, since {én} is bounded in H?(R), it follows by the same argu-
ments used to prove Lemma [5.7] that

li an, " 2 _ \2
A | on(9n) /Rgl(gl)
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and
. 4 4
”lggo R¢n B /Rgl'

Therefore
: IUAVIEERT 7 § TO(N2 74
Jim R(%) = lim (E4(¢n)+ 3/R¢n(¢n) 16/R¢n>
5 ! 5 1
:E4(91)+§/H§91(91)2—E/Rg?: (g)?.

Hence we have that R

Jim (|6 2@) = (19112 @®)- (5.38)
But, from the weak compactness of the unit sphere in Hilbert space, we may
assume by passing to a further subsequence that {¢,} converges weakly in

H?(R), and the limit must be g;. From (5.38) it then follows that {¢,} must
converge strongly to g; in H2(R). This implies that

Jim ([fn = Yoy a lla2@) =0,

which, since ¢ 4,1 € S(C) for all n € N, shows that {¢,} converges strongly
to S(C) in H?(R). This then completes the proof of part 1 of Theorem Gl

Proof of part 2 of Theorem Assume that (23] holds. Applying
part 2 of Lemma B2 with A = (a/12)Y/3 and B = (—5b/36)/5, we obtain that
there exists a unique pair of numbers y; and y, such that 0 < y2 < y1 and (£3)
holds. Define 7 = 43 and Cy = 3?; then we have 0 < C; < O3 and

Eo(C1,Co) =12 (] + €5%) = a
I (5.39)
E3(Cl,02)_T(Cl +C3%) =,

Therefore, for every pair (vi,72) € R?, we have Es(tc, chim,re) = @ and
E3(Ycy,Csi71 7, ) = b; and hence from the definition of J(a,b) we have that
36
By(Yicy caom ) = Ea(C1,C2) = = (€72 + €1%) = J(a,b). (5.40)

Let {x,,} be the numbers defined after (530). From (&.271), (£39), and (540)

it follows that, for these numbers, the inequalities (£27]) hold, along with the
inequality

o0
ST al <yf + 4l
=1

Therefore, by part 2 of Lemma [LI0 we must have that z; = 0 for all 7 > 3,

and so we conclude that 5 5 5 5
x] +xy <Yy s

af + a5 >yl + 18
x] + 2k <yl +ys.
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It therefore follows from Lemma .5 that x1 = y; and a9 = ys.
We thus see that (after relabelling the numbers Dy; and Ds; if necessary),
we can reduce consideration to two possible cases: Case I in which

0<D11201<D21:O27
and Dy; = Dy; = 0 for all 4 > 2, and Case II in which
0=D11 <Dy =C1, 0= D13 < Doy =04,

and Dq; = Do; = 0 for all ¢ > 3.
In Case I, we have that g1 = ¥c, ¢y .41+, for some (71,72) € R% Then

Jim Es(én) = a = E2(g1)
Jim E3(¢n) = b= E3(g1),
and from ([E.27) and (&40) we have that

In particular, this implies that g1, along with every other element of S(Cy, Cs),
is a minimizer for J(a,b).

The same argument as in the paragraphs following equation (533]) now shows
that the translated sequence ¢, (z) = ¢, (x + ) converges strongly in H?(R)
to g1. Hence

nh—>nolo ||¢n - ¢01,C2171+1}“’72+$}l||H2(R) = 07

which shows that {¢,} converges strongly to S(C1,C2) in H?(R). This com-
pletes the proof of part 2 of Theorem 2.6]in Case 1.

We turn now to Case II. In this case, we have that g1 = 9¢, ,, and g2 =
Yy, for some (71,72) € R?; and g; = 0 for all i > 3. Then from (5.39) we
have that

lim E5(¢n) =a = Ez(g1) + E2(g2)

n—oo
Jim Es(én) = b= Fs(91) + Es(g2),
and from (B27)) and (&40) we have that
Jim Ey(én) = J(a,) = Ea(g1) + Ea(g2)- (5.41)

In particular, this implies again that every element of S(C7,C3) is a minimizer
for J(a,b). However, now it is no longer the case that one can translate the
functions in the sequence {¢,} to obtain a strongly convergent sequence in
H?(R). Instead, we must modify the argument in the proof of part 1 of the
Theorem, as follows.

Repeating the argument used above to obtain (5.34]), we obtain in this case
that

n

lim | Ep(wn) + > Em(v})| =0 (5.42)

n—oo ;
=3
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for m = 2 and m = 3. When m = 2, (£42) immediately implies that

Jim l||wn||L2(R) +2||UZ||L2(R)] =0.

Also, by the same proof used above to prove (5.37), we have in this case that

3
nh_)rr;OZ/ ol |? = (5.43)

and together with Lemma b4 and (542) for m = 3, this implies that

lim [nwnnm) 3 ||v:;||H1<R>] 0. (5.44)

=3

Since, by the Sobolev embedding theorem,

2
/R o (w)?] < llwnll L) / (w!,)? < Cllwn 3 g,

it follows that

1
T \mwn) -3 [wiy| =0 (5.45)
and hence
lim inf Fy(w,) > 0. (5.46)

n—oo

From (5.6) and (5.41), we have
lim Ei(¢n) = lim <ZE4 +E4(wn)> = E(g1) + E(g2).

i=1

Now observe that, by the same argument used to deduce (537) and (&43]) from
EI3), it follows from (I4]) that

J;H;OZ / [

Therefore we can write

} + |v:;|4} =0. (5.47)

lim Ey(én) = hm

n—oo

Ey(v )+E4 Z/ / +E4 wn)] . (5.48)

For every sequence {n}ren of integers approaching infinity, it follows from

E410), (48), and Fatou’s Lemma that

. A 7; 2 A
kli)rgo Ey(dn,) > hkrr_l)g.}f Ey(v) ) + hm 1nf E4(v Z hII_l)LI.}f (vi)" + hklggéf Ey(wn,,)

7l

i=3

— 1im 3 1 EN 2 P I c.
= hkrril(gf Ey(v,,) + hkrgl(gf Ey(vy,, ) + Z: hkrgl(gf Ey(vy,, ) + hkrggf E4(wy,,).

(5.49)
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We claim now that

nlgn;o Ey(w,) =0 (5.50)
and, for every i € N, _
le Ey(v)) = E4(gi)- (5.51)

For otherwise, we would have either limsup E4(w,) > ¢ for some ¢ > 0, or
n—oo

limsup E4(v) > E4(g;,) + € for some ig € N and some ¢ > 0. In either case it
n—roo

would follow from Lemma B8 and (546) that there exists a sequence of integers
{nk}ren approaching infinity for which (549) implies

lm Ey(¢n,) = > Eu(g) +e

i=1
But then from (&4I]), since g; = 0 for i > 3, we obtain that

lim E4(¢nk) > lim E4(¢n) t+e
k— o0 n—oo

This contradiction proves our claim.
From (5.45) and (E50) we conclude that lim [ (w!/)? = 0, and together

n—r00 R n
with (B44]) this gives that

For all i € N, since {6}, }en converges to g; strongly in H'(R) and weakly
in H%(R), and since (5.51) implies that lim E4(0%,) = E4(g:) as well, it follows
n— oo

from the same argument used to prove (5.38) that
nlLH;O ||6‘:I - gi||H2(R) =0.

Therefore, we have

lim [vf, = Ve myitat 2@y =0 for i =1,2; (5.53)

and .
. i _ s
nh_)rr;o vy |l 2ry =0 fori > 3. (5.54)

From Corollary B4 we see that lim |z) —22| = oo, since |z} —22| > rl 472
n—oo

and lim 7} = lim r? = co. From (53) and the triangle inequality, we have
n—r00 n—oo

||¢n - ¢01,C2y’n+mh,'yz+xi||H2(R) < ||'le1 - ¢Cl,71+x}l”H2 + Hvi - wCz,'yfrm% ||H2
k

D A e A ey
i=3

+ ||wcl7’71+%1l + wczﬁz-‘rwﬁ - 1/)017027’714%1 Yo+x2

n?
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But by Lemma 21 (£52), (B53), and ([E54), all the terms on the right-hand
side of the preceding inequality have limit zero as n goes to infinity. This then

completes the proof of part 2 of Theorem

Proof of Corollary 2.71 Corollary 2.7 follows from Theorem by a
standard argument, which we include here for the reader’s convenience. Suppose
C1 and C5 are given such that 0 < Cy; < C5, and define

a = Ey(Cy,Co) = 12(C3/7 + ¢3/%)
—36
b= E3(C1,Cy) = T(Cfﬂ +05%).

Then from Lemma 2] it follows that a and b satisfy ([2.9), and so the assertion
about convergence of minimizing sequences to S(C7, Cs) follows from Theorem
2.0l

To prove stability, we argue by contradiction: if S were not stable, then
there would exist a sequence of initial data {ug,}neny in H?(R) such that
nh_}rrgo d(uon,S) = 0 and a number € > 0 and a sequence of times {t, },en such

that the solutions wu, (z,t) of KAV with initial data wuy,(-,0) = ug, would satisfy
d(u(-,t,),S) > ¢ (5.55)

for all n € N. Let ¢, = u(+,t,,) for n € N. Since Es, E3, and E4 are continuous
functionals on H?(R), and are conserved under the time evolution of the KAV
equation, we have

hm E2(¢n) = hm EQ('LLOn) = EQ(Cl,CQ) =a

nlil& Es(¢n) = nlglgo E3(uon) = E3(C1,C2) = b
hln E4(¢n) = 11‘>In E4(U0n) = E4(Cl, CQ) = J(a, b)

Hence {¢,} is a minimizing sequence for J(a,b), and so must converge strongly
to S in H?(R). But this then contradicts (5.55]).
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